MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

© 2022 Mitsubishi Heavy Industries Engineering, Ltd. All Rights Reserved.

Annual CO₂ capture amount to achieve carbon neutrality A MITSUBISHI HEAVY INDUSTRIES

- In order to achieve carbon neutrality in 2050, anthropogenic CO₂ emissions must be reduced. However, even after such efforts, we expect around 4.3-13G tons of CO₂ emissions to remain.
- To capture this remaining CO₂, 100 to 300 times the current capacity is needed.
- In 2050, CO2 capture will operate in a wide range of sectors, including industries, fuel production (including blue fuel production), power generation, and others (aviation, transportation, etc.).

Deployment of CCUS is required in a wide range of sectors

*1 : Annual estimates based on our internal analysis of reports including McKinsey 1.5°C scenario, IEA Net Zero by 2050, IEA SDS, and IPCC materials.

CO₂ Ecosystem

- MITSUBISHI HEAVY INDUSTRIES
- CO2 value-chain : connecting end-to-end values / business of CCUS to accelerate carbon neutrality
- CO₂ capture process application : gaining momentum to expand to various CO₂ emissions
- CCUS digital platform : data transparency and business flexibility for tracing and trading of CO2
- Investment : accelerating R&D of techs and products, also investing on innovative start-ups

Advanced KM CDR Process[™] - Overview and Features

- KM CDR Process[™] = Kansai Mitsubishi Carbon Dioxide Recovery Process
- Amine-based technology
- Capable of capturing >95% CO₂ from combustion gas
- Proprietary features developed over three decades

MHI CO₂ Capture Development Progress

	Began R&D with Kansai Electric Power Co. - 1990 2 tpd pilot plant at KEPCO's Nanko Power Station - 1991 Developed KS-1™ and KM CDR Process™ - 1994		
Development Activities		1999 - 200 tpd plant in Malaysia	
	1 tpd coal pilot test at Hiroshima R&D Center - 2002 Developed proprietary energy efficient process - 2003		<u>Activities</u>
	10 tpd coal pilot test at Matsushima - 2006	9 2005 - 330 tpd plant in Japan 9 2006 - two 450 tpd plants in India	
	Large absorber flow test at Mihara works - 2008		ercia
		2009 - 450 tpd plant in India; 450 tpd plant in Bahrain 2010 - 400 tpd plant in UAE; 240 tpd plant in Vietnam	Commercial
	Plant Barry 500 tpd demonstration project - 2011-2014	2011 - 340 tpd plant in Pakistan 2012 - 450 tpd plant in India 2014 - 500 tpd plant in Qatar	
		2016 - 4,776 tpd plant in Texas 2017 - 283 tpd plant in Japan	
Develop	ed KS-21 [™] and Advanced KM CDR Process [™] at TCM - 2021) 2022 - 0.3 tpd plant in Japan; 1,200 tpd plant in Russia (2023 - 240 tpd plant in Bangladesh (Planned)	Planned)

MHI's experienced global KM CDR ProcessTM team stands ready to meet customer requirements for commercial CO_2 capture plants on various coal exhaust from conceptual design through detailed engineering and project delivery.

MITSUBISHI HEAVY INDUSTRIES ENGINEERING

Year of Delivery	Country	Flue Gas Source	CO ₂ Capacity (TPD)	Application
1999	Malaysia	NG Fired Furnace	210	Urea Production
2005	Japan	NG and Heavy Oil Boiler	330	GeneralUse
2006	India	NG Fired Furnace	450	Urea Production
2006	India	NG Fired Furnace	450	Urea Production
2009	India	NG Fired Furnace	450	Urea Production
2009	Bahrain	NG Fired Furnace	450	Urea Production
2010	UAE	NG Fired Furnace	400	Urea Production
2010	Vietnam	NG Fired Furnace	240	Urea Production
2011	Pakistan	NG Fired Furnace	340	Urea Production
2012	India	NG Fired Furnace	450	Urea Production
2014	Qatar	NG Fired Furnace	500	Methanol Production
2016	USA	Coal-Fired Boiler	4,776	Enhanced OilRecovery
2017	Japan	Gas Fired Furnace	283	GeneralUse
2021	Russia	NG Fired Furnace	1,200	Urea & melamine Production
2023	Bangladesh	NG Fired Furnace	240	Urea Production

The world's largest CO2 capture plant on coal-fired flue gas delivered in December 2016.

Supported by DOE (U.S. Department of Energy) grant program (CCPI* Round 3) and Japanese government finance (JBIC / NEXI)

*Clean Coal Power Initiative

Plant location	NRG WA Parish Power Plant (Thompsons, TX)
Project owner	Petra Nova – partnership between NRG Energy and JX Nippon Oil & Gas
Plant scale	240 MW _{eq}
CO ₂ capacity	4,776 TPD (1.4 Mmtonne/year)
CO2 conc.	11.5 mol%-wet
CO ₂ removal	90%

*U.S. Department of Energy "W.A. Parish Post-Combustion CO₂ Capture and Sequestration Project Final Environmental Impact Statement Volume I" (Feb, 2013), DOE/EIS-0473

Petra Nova Project "On-Budget and On-Schedule"

Power Magazine "**Plant of the Year**" August 2017

Scale up progress

CONFIDENTIAL ®

© 2022 Mitsubishi Heavy Industries Engineering, Ltd. All Rights Reserved

Pioneering deal to deliver world largest carbon capture project

Drax and MHI have agreed a long-term contract for use of MHI's carbon capture technology at Drax BECCS Project. (Press Release on 10th June 2021)

Site Location	North Yorkshire, UK	
Project Owner	Drax Power Limited	
CO ₂ Source	Biomass Boiler Flue Gas	
CO ₂ Capacity	At least 8 million tons per year	
Capture Process	Advanced KM CDR Process™ KS-21™ Solvent	

- World's largest carbon capture project More than x5 of Petra Nova
- <u>World's first</u> negative emission project
- UK's first carbon capture project at scale

MITSUBISHI HEAVY INDUSTRIES

Successfully Completes Testing of New "KS-21™" Solvent for CO2 Capture

Mitsubishi Heavy Industries Engineering (MHIENG), part of Mitsubishi Heavy Industries (MHI) Group, has entered into an agreement with Technology Centre Mongstad (TCM) to test its proprietary solvent for capturing CO2 at the amine plant located in Mongstad, Norway. The test campaign complete in Oct 2021.

- KS-21[™] solvent, jointly developed with KEPCO, achieves up to <u>99.8%</u> flue-gas carbon capture rate
- TCM offers world's largest and most flexible facilities and expertise
- MHI aims to expand its carbon capture business in the UK and Europe

Smaller capture devices will be modularized and digitized to meet the challenges and needs of customers.

As a leading company in CO₂ capture, we offer a wide range of CO₂ capture technologies.

Our Approach

- Standardized and Modularized, Medium and Small-scale CO₂ capture plants are developed and demonstrated for various "hard-to-abate" industry sectors. (All product line-up will be ready by FY23.)
- CO₂ capture as a Service in addition to automatic operation and remote monitoring services will be started from FY24.

CO₂ Emissions

- MHI Group has a portfolio of technologies essential for CCUS, including CO₂ capture, transportation, and compression.
- We aim to further expand our business in the fields of large CO2 carriers and CO2 compression, which will become necessary as the volume of CO2 increases.

We are contributing to the establishment of a robust value chain by offering broad CCUSrelated technologies

MOVE THE WORLD FORW>RD

