

© MITSUBISHI HEAVY INDUSTRIES (THAILAND) LTD. All Rights Reserved.



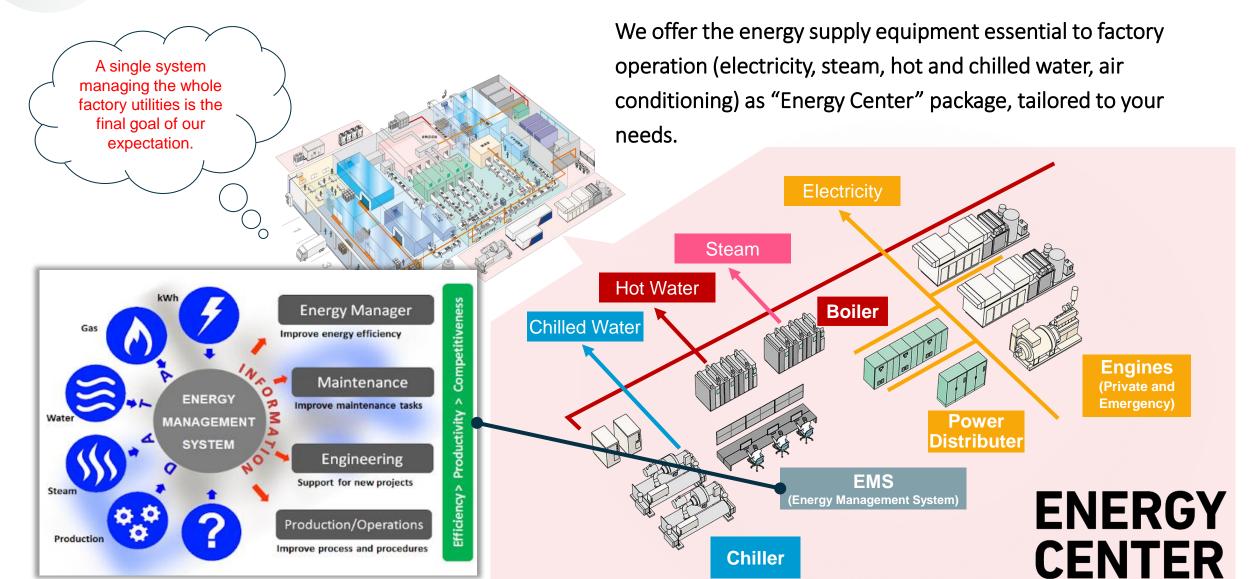
CONTENT

1 Energy management system
What is EMS & Features

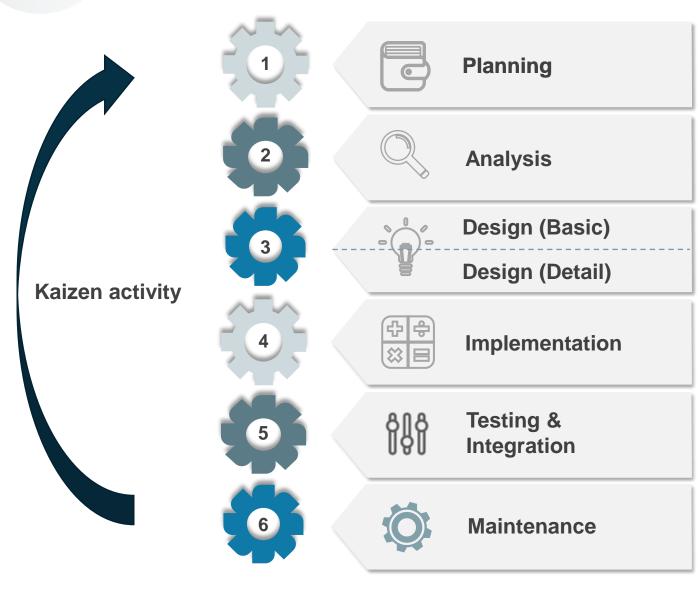
Project references

Our success stories

Energy Management System


What is EMS & Features

Energy Management System



Chiller

Energy Management Development Cycle

Support by MHI without fee

Sale contract signed

Complete commissioning

Support by MHI
Upon customer request case by case

Manual Operation VS Energy Management system

Man-Power

Pumps

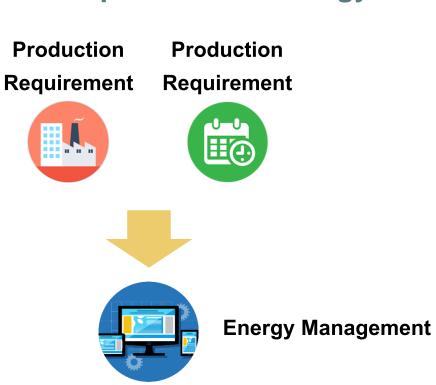
Valves

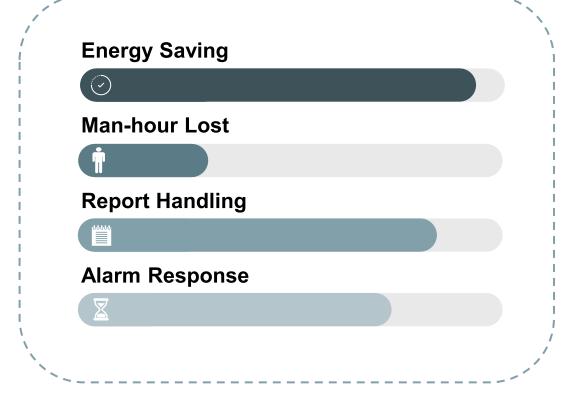
Chillers

Cooling

Towers

Report Handling


Alarm Response



Manual Operation VS Energy Management system

Pumps

Valves

Chillers

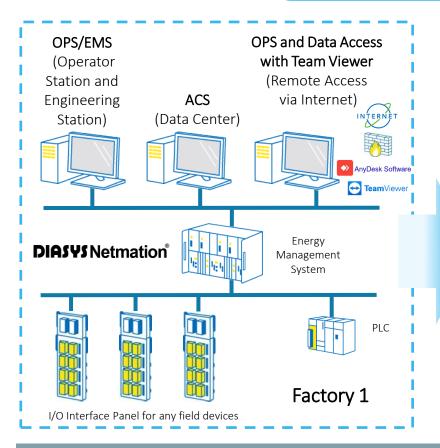
Cooling

Towers

Distribute Control System VS Programable Logic Controller

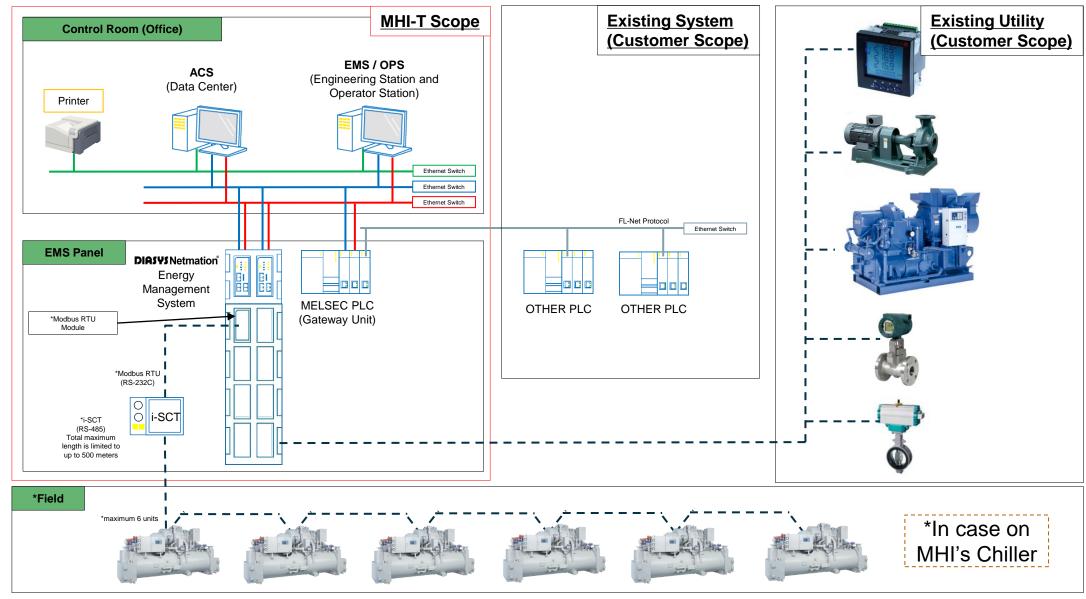
DCS can be compatible with many system, such PLC level, OPC level, even field level. Furthermore, the systems can be integrated working interrelated to each other. You can monitor the whole factory within one system.

- Complex process control with numerous IO points of combined system
 - Point to Point processor
 - Easy application for redundance control system
 - Included HMI based on Window OS resolution
 - Function Block based on MS Visio.
 - Suitable for process combined system of whole factory (Expandable system)
 - Automatic generate report in excel file following customers requirement form
- Have a project database sever that can access with many engineer modifications at the same time
- Processor industrial type **Processing manner** Redundance control Human interface Development language Platform Report function **Project modification**
- Only sequence control with high-speed control such Arm robot etc.
- Scan time processor
- Complicate redundance function of control system
- Require SCADA or HMI
- Ladder, Struct text, Function block
- Suitable for a part of process with specific responsibility
- Require more tools to arrange reports in excel file such as OPC
- Working into developer software with single engineer development.


Features - Benefits

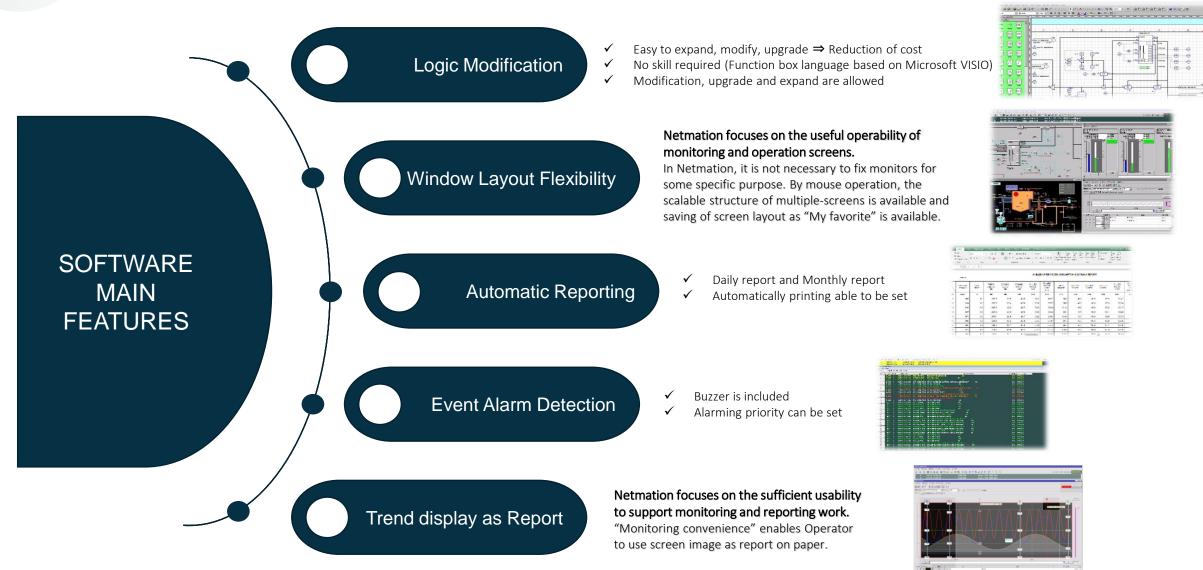
Management Level is able to access to Energy Management System via Smart phones / Tablet / Notebook

- Access to operator screens
- Access to the energy report
- Access to the utility cost report


Features and Benefits

- Real-Time Utility's Cost Monitoring for each shops, each production lines
- Real-Time Machine Status Monitoring such as chillers, air compressors, and boilers
- Real-Time Machine's Efficiency Monitoring
- Waste/Loss Energy Monitoring
- Real-Time Trend Function Monitoring for operator
- Automatic Reporting
- Automatic Alarming
- Remote Monitor via Smart Phone
- Reduce OPEX for long-term maintenance
- Communication with the existing system (PLC, DCS, SCADA)

System Configuration Supply



Software Main Features

Trend Function

- Many selections of background color, line color and line type
- Flexible scaling

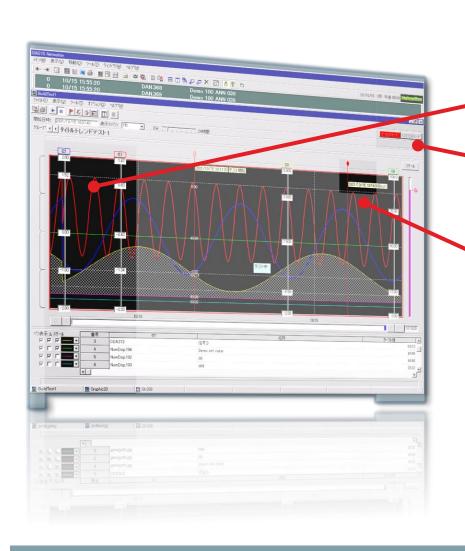
Useful function (2)

Recent mode: displays real time data Historical mode: displays historical data

Data collection cycle and time can be set as you like (according to storage capacity). * *

Historical

Useful function (3)

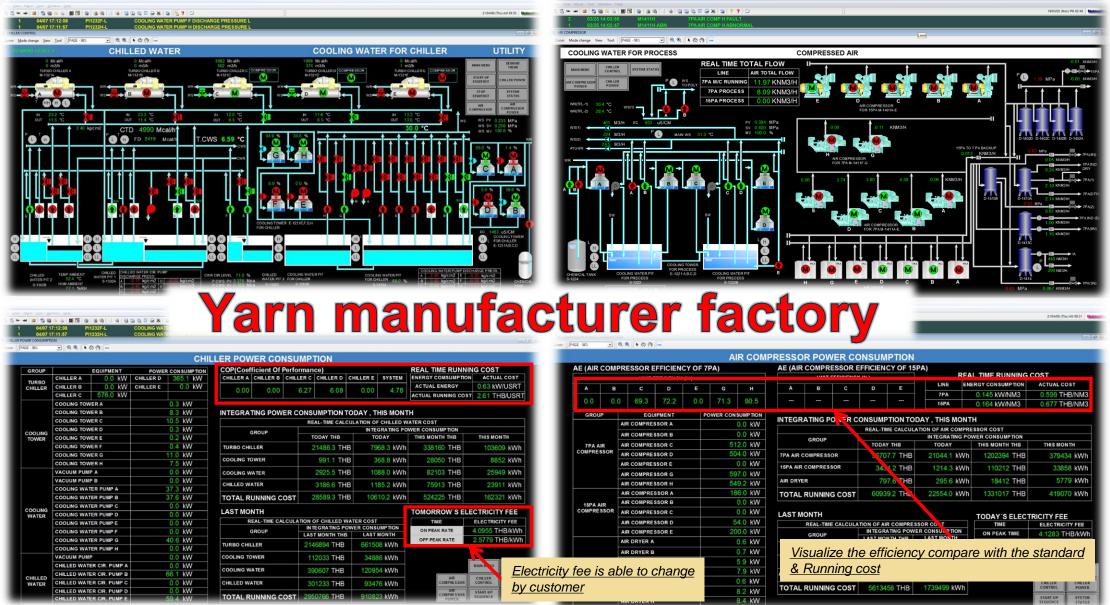

Post-it and flag marking are included as standard. The flag can be set by drag & drop from alarm/event. The information traceability is upgraded.

** Standard setting of each mode (It is settable according to storage capacity.)

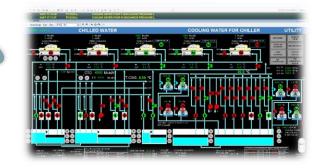
The standard data collection cycle and time of each mode (recent / historical) is as follows.

- Recent mode: 1-second cycle within 24 hours
- Historical mode: 10-second cycle, over 24 hours and up to 31 days

Project references


Our success stories

Success Stories – Yarn Manufacturer


Success Stories – Yarn Manufacturer

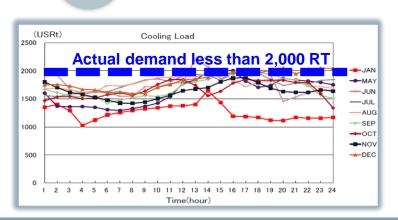
Improvement of chiller system (Feb 2021)

- Replacement of 1 existing chiller with MHI high efficiency model (Fix)

04

Further Improvement (June 2016 to March 2018)

- Replacement of 1 existing chiller with MHI high efficiency model (VSD)


Air Com Efficiency Monitoring (March 2019)

- Efficiency monitoring and reporting
- Cost monitoring and reporting
- Loss monitoring

02

MHI Solution (May 2015)

- Automatic start and stop of Chillers and Aux. equipment by EMS considering factory demand

Effect of Improvement (May 2015 to March 2016)

- 10% of Energy Cost Saving with ROI: 2.5 year (EMS + Modification of valves and sensing devices)

01

Monitoring, Visualization & Analysis (Sep 2014)

- 3,300 RT (1,100 RT x 3 sets) Chilled System always operated in manual
- However, actual thermal demand is less than 2,000 RT

15

MSG manufacturer factory

0°C LINE	A-D		20°C LIN	E A-C					erformance)							
GROUP	DEVICE	POWER CONSUMPTION	GROUP	DEVICE	POWER	KC-	N9513A 2.89	KC-N9513B 0.00	KC-N9513C 2.67	KC-N9513D 0.00	SYST	1 37	KC-N95			STEM COP 15.42
CHILLER	KC-N9513A	425.0 kW	CHILLER	KC-N9503A	0.0 kW		2.03	0.00	KC-N9513E		OVOT		1433312	4 0.00	0.00	13.42
	KC-N9513B	0.0 kW		KC-N9503E	0.0 kW				0.00	KC-N9513F 0.00	SYST	EM COP				
	KC-N9513C	361.1 kW		KC-N95030	0.0 kW	_					<u> </u>				ING POWER C	CONSUMPTION
	KC-N9513D	354.8 kW		PC-N9502A	51.2 kW	REAL-TIME CALCULATION OF CHILLED WATER COST										
Br SENDING PUMP	PC-N9512A	109.4 KW	CHW SENDING PUMP	PC-N9502E	0.0 kW	0.7 kW 0.0 kW 18.0 kW 23.4 kW 0.0 kW 0.0 kW	GROUP		INTEGRATING POWER CONSUMPTION							
	PC-N9512B	95.8 kW		PC-N95020	0.7 kW				TODAY THB	TODAY		THIS MON	тн тнв	THIS MONTH	LAST MONTH TH	B LAST MONTH
	PC-N9512C	37.3 kW		PC-N95020	0.0 kW		CHI	LLER	28082 THE	9472	kWh	3587	93 THB	109983 kWh	0 TH	0 kV
	PC-N9512D	0.0 kW	CW CIR.PUMP	PC-N9504/	18.0 kW		Br SENDING	2513 THE	B 3825 kW	kWh	Wh 197836	36 THB	60012 kWh	0.TH	B 0 kW	
	PC-N9512G	104.9 kW		PC-N9504E	23.4 kW		E	Name of Street								
Br CIR PUMP	PC-N9514A	33.3 kW		PC-N95040	0.0 kW			R. PUMP	2513 THE	847	kWh	1719	71 THB	55671 kWh	0 TH	B 0 kW
	PC-N9514B	29.3 kW		PC-N9504E	0.0 kW		SUB TOTAL	41717 THB	14144 kWh	kWh	/h 728599 T	99 THB	225666 kWh	0 TH	B 0 kW	
	PC-N9514C	13.3 kW		PC-N9504E	0.0 kW											
	PC-N9514D	40.4 kW	TOTAL		93.4 kW		СНІ	LLER	12742 THE	4381	kWh	1779	71 THB	55510 kWh	0 TH	B 0 kW
	PC-N9514G	0.0 kW				0°C		NDING JMP	3862 THE	1329	kWh	635	19 THB	19375 kWh	0 TH	B 0 kW
TOTAL 1604.7 kW						(E-F) Br CIR. PUMI		1361 THE	469	kWh	378	68 THB	10494 kWh	0 TH	B 0 kW	
0°C LINE E-F			TODAY'S ELECTRICITY FEE													
GROUP	DEVICE	POWER CONSUMPTION	TIME	EL	ECTRICITY FEE		SUB	TOTAL	17965 THE	6179	kWh	2793	58 THB	85379 kWh	0 TH	B 0 kW
CHILLER	KC-N9513E	453.5 kW	ON PEAK		4.1283 THB/kWh		СНІ	LLER	2639 THE	1011	kWh		77 THB	3311 kWh	0 TH	B 0 kV
	KC-N9513F	0.0 kW	OFF PEAR	OFF PEAK RATE 2.6107 THB/kWh		20°C CHW SENDING		732 THE	237	kWh	325	70 THB	10480 kWh	0 TH	B 0 kV	
Br SENDING PUMP	PC-N9512E	14.7 kW	MAIN MENU	SENDING PUMP		LINE	LINE PUMP									
	PC-N9512F	114.8 kW	CONTROL			(A-C) C	CHW C	IR. PUMP	993 THE	351	kWh		90 THB	55140 kWh	0 TH	B 0 kW
Br	PC-N9514E PC-N9514F	0.0 kW	CHILLER CHII				SUB	TOTAL	4365 THE	1598	kWh	2562	36 THB	68931 kWh	0 TH	B 0 kW
TOTAL	PC-N9514F	43.2 kW 626.3 kW	CIR. PUMP CONTROL	PARAMET		TOTA	AL RUNN	IING	64047 THE	21921	kWh	17134	34 THB	379976 kWh	0 TH	B 0 kW

06

Modification of chiller system (Feb 2022)

- Add blackout function to chiller system Utilities 1 combination with new biomass power plant 9.9 MWe

Furtr

04

Further Improvement (Jan 2019)

- Full auto control running
- Actual ROI: around 1.5 year

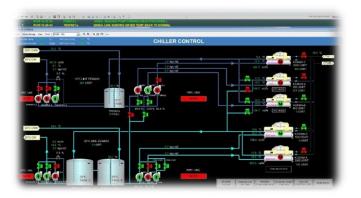
Chiller Optimization for Utilities 2 (Dec 2021)

- Established EMS separately from Utilities 1

05

Chiller Optimization for Utilities 1 (May 2017)

Automatic start and stop of Chillers and Aux.
 equipment by EMS considering factory demand


- Run priority chiller

Support customer (Jun 2017 to Dec 2018)

- Equipment fixing consultation by MHI
- Valves and sensing devices modification
- Programming modification

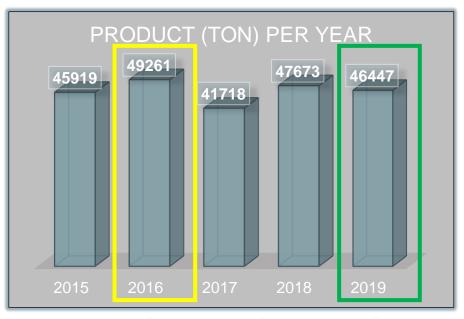
02

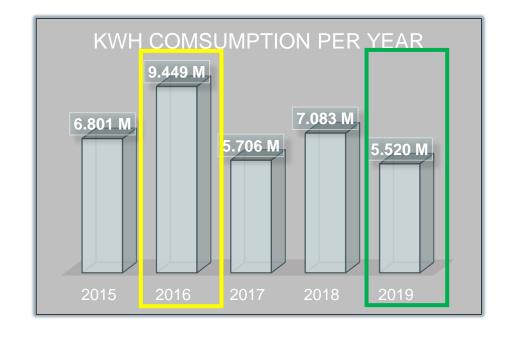
Data Analysis (2016)

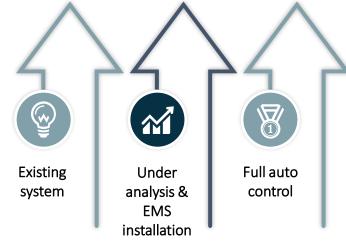
- 5 sets of chiller operation manner analysis.
- Chillers always operated in manual
- Actual thermal demand is less than 2,000 RT

03

01


Table: Production amount (ton) VS Energy consumption (kWh)


	Ton-Product (Monthly)								
	2015	2016	2017	2018	2019				
Jan	4,098	4,077	2,818	4,187	4,253				
Feb	3,633	3,915	2,334	3,799	1,481				
Mar	4,019	3,941	4,223	3,691	4,246				
Apr	3,993	4,013	4,161	3,544	4,218				
May	4,129	4,184	2,553	3,968	4,065				
Jun	3,932	4,030	2,328	4,093	3,934				
Jul	3,949	4,196	3,799	4,171	4,320				
Aug	4,112	4,252	4,072	4,063	4,019				
Sep	3,892	4,120	3,977	3,963	4,042				
Oct	4,012	4,202	4,313	4,089	4,094				
Nov	2,072	4,061	2,748	4,110	4,107				
Dec	4,079	4,270	4,393	3,995	3,669				
Total	45,919	49,261	41,718	47,673	46,447				
	93%	100%	85%	97%	94%				


	kWh (Monthly) Total 10 + 20 degC								
	2015	2016	2017	2018	2019				
Jan	568,665	522,259	413,921	505,190	531,426				
Feb	401,378	600,412	350,807	566,765	272,305				
Mar	606,226	571,385	531,808	616,486	494,380				
Apr	694,847	775,615	542,325	523,200	530,050				
May	706,691	1,069,806	383,508	605,181	554,181				
Jun	480,830	1,048,676	366,137	649,976	497,440				
Jul	606,653	813,472	547,597	674,590	407,790				
Aug	616,909	783,315	578,732	665,292	414,430				
Sep	585,872	959,973	562,600	697,687	435,930				
Oct	606,820	939,549	545,946	510,593	452,850				
Nov	369,801	786,437	373,450	543,918	361,880				
Dec	557,249	577,754	508,672	524,364	567,510				
Total	6,801,941	9,448,653	5,705,503	7,083,242	5,520,172				
	72%	100%	60%	75%	58%				

Product per Energy consumption calculation

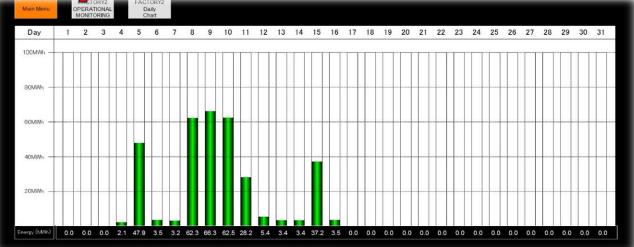
Y2016 - 9,448,653(kWh) / 49,261 (Ton) = 191.8 (kWh/Ton) Y2019 - 5,520,172(kWh) / 46,447 (Ton) = 118.8 (kWh/Ton)

Cost Saving.

 $[191.8 (kWh/Ton)] - [118.7 (kWh/Ton)] \times 46,447 (Ton)] = 3.39 M [kWh]$ *Electric tariff (Avg. 3.4 THB/kWh) = 11,521,490 THB/Year

CO₂ Saving.

* CO_2 Emission Reduction (Base 0.5642 kg CO_2 /kWh) = **1,912,994** kg CO_2



Success Stories – Vehicle part Manufacturer

Vehicle part manufacturer factory

Success Stories – Vehicle part Manufacturer

- Established EMS for power monitoring Plant#2, Plant#5, Plant#7

New power meter installation (Apr 2021)

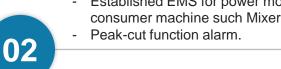
- Installed Plant#1, Plant#3, Plant#6 power meters and cable wiring.

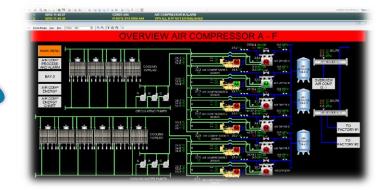
Analysis for EMS (Nov 2019)

- First step for EMS, plant by plant monitoring
- Focused on the most energy usage plant

Success Stories – Tire Manufacturer

Success Stories – Vehicle part Manufacturer



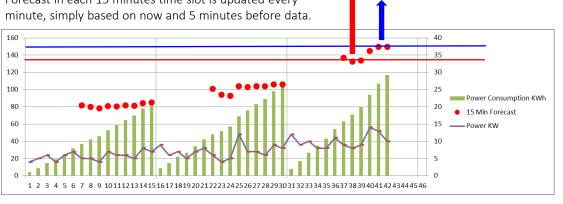

Air compressor monitoring (Jan 2022)

- Efficiency monitoring and reporting
- Cost monitoring and reporting

Power monitoring system (Aug 2020)

Established EMS for power monitoring the most consumer machine such Mixer.

Air compressor monitoring (Apr 2021)


- Extended project for air compressor monitoring system

01

First step for EMS, power monitoring for Mixer machine.

Customer problem is the fee of peak power charge is too high.

MOVE THE WORLD FORW➤RD