APIO 2016
7th May 2016
Republic of Korea
gap

## Gap

There are $N$ non-negative integers $a_{1}, a_{2}, \ldots, a_{N}$ satisfying the following inequality $0 \leq a_{1}<a_{2}<\cdots<a_{N} \leq 10^{18}$. Jeehak wants to know the largest possible value of $a_{i+1}-a_{i}$ where $i$ ranges from 1 to $N-1$. The input integers will not be given directly to Jeehak's program but will be accessible through a special funtion. See sections Implementation of your selected programming language for details.

## Task

Help Jeehak to implement a function to return the largest possible value of $a_{i+1}-a_{i}$ where $i$ ranges from 1 to $N-1$.

## Implementation for $\mathbf{C}$ and $\mathrm{C}++$

You need to implement one function findGap(T, N) that takes the following parameter and returns an integer of type long long:

- T - the subtask number (1 or 2 )
- N - the number of given integers

Your function findGap can call function $\operatorname{MinMax}(\mathrm{s}, \mathrm{t}, \quad \& \mathrm{mn}, \quad \& m x)$ where the first two parameters $s$ and $t$ are integers of type long long and the last two paramters \&mn and \&mx are pointers to integer variables of type long long, i.e., $m n$ and $m x$ are integer variables of type long long. When $\operatorname{MinMax}(s, t, \& m n, \& m x)$ returns, the variable $m n$ will have the value of smallest $a_{i}$ larger than or equal to the value of s and the variable mx will have the value of largest $a_{j}$ smaller than or equal to the value of $t$. In case there are no input integers between $s$ and $t$ (inclusive), then both $m n$ and $m x$ will have the value -1 . The value of $s$ should be no larger than the value of $t$ when MinMax is called. If this condition is not met, program will be terminated with a non-zero exit code.

## Implementation for Pascal

You need to implement one function findGap(T, N) that takes the following parameter and returns an integer of type Int64:

- T - the subtask number (1 or 2) (Integer type)
- N - the number of given integers (LongInt type)

Your function findGap can call procedure $\operatorname{MinMax(s,~t,~mn,~mx)~where~the~first~two~}$ parameters $s$ and $t$ are integers of type Int64 and the last two paramters $m n$ and $m x$ are variables called by reference of type Int64, i.e., $m n$ and $m x$ are integer variables of type Int64. When $\operatorname{MinMax}(\mathrm{s}, \mathrm{t}, \mathrm{mn}, \mathrm{mx})$ exits, the variable mn will have the value of smallest $a_{i}$ larger than or equal to the value of s and the variable mx will have the value of largest $a_{j}$ smaller than or equal to the value of $t$. In case there are no input integers between $s$ and $t$ (inclusive), then both $m n$ and $m x$ will have the value -1. The value of $s$ should be no larger than the value of $t$ when MinMax is called.

If this condition is not met, the program will be terminated.

## Implementation for all

In addition to the standard requirements (time and memory limits, no runtime errors, etc), your submission has to achieve the following in order to solve a testcase:

- your function findGap must return the correct answer,
- the cost $M$ associated with calls to function MinMax must not exceed the allowed limit (see section Scoring).


## Example for C, C++

Consider the case where $N=4$ and $a_{1}=2, a_{2}=3, a_{3}=6$, and $a_{4}=8$.
The answer, which is 3 , can be calculated and thus returned by findGap if the following calls to MinMax are made:

- $\operatorname{MinMax}(1,2, \& m n, \& m x)$ is called and $m n$ and $m x$ both have the value 2.
- MinMax (3, 7, \&mn, \&mx ) is called and $m n$ have the value 3 and $m x$ has the value 6 .
- MinMax ( $8,9, \quad \& m n, \& m x)$ is called and $m n$ and $m x$ both have the value 8 .


## Example for Pascal

Consider the case where $N=4$ and $a_{1}=2, a_{2}=3, a_{3}=6$, and $a_{4}=8$.
The answer, which is 3 , can be calculated and thus returned by findGap if the following calls to MinMax are made:

- MinMax (1, 2, mn, mx) is called and $m n$ and $m x$ both have the value 2 .
- MinMax (3, 7, mn, mx $)$ is called and $m n$ have the value 3 and $m x$ has the value 6 .
- $\operatorname{MinMax}(8,9, m n, m x)$ is called and $m n$ and $m x$ both have the value 8 .


## Scoring

In all subtasks the constraint $2 \leq N \leq 100,000$ holds.
Subtask 1 ( $\mathbf{3 0}$ points): Each call to MinMax will add 1 to $M$. You will receive the full score for the subtask if $M \leq \frac{N+1}{2}$ for all test cases.

Subtask 2 ( $\mathbf{7 0}$ points): Let $k$ be the number of input integers larger than or equal to S and smaller than or equal to t in a call to MinMax. Each call to MinMax will add $k+1$ to $M$. The final score will be calculated by the following rule: Final score for the subtask is the minimum score you received among all test cases. For a test case, the score is 70 if $M \leq 3 N$ and the score is $\frac{60}{\sqrt{\frac{M}{N}+1}-1}$, otherwise.

## Experimentation

The sample grader which can be downloaded from the scoring system will read data from standard input. The first line of input should contain two integers, subtask number $T$, and $N$. The next line should contain $N$ integers in ascending order. The sample grader will write to standard output the value returned by findGap in the first line and the value of $M$ appropriate for the subtask the input test case belongs to.

The following input describes the above example:
24
2368

