Task Konstrukcija

Let G be a directed acyclic graph. If $c_{1}, c_{2}, c_{3}, \ldots c_{n}$ are distinct vertices of G such that there is a path from c_{1} to c_{2}, there is a path from c_{2} to c_{3}, \ldots and there is a path from c_{n-1} to c_{n}, we say that array $C=\left(c_{1}, c_{2}, c_{3}, \ldots c_{n}\right)$ is an ordered array starting at c_{1} and ending at c_{n}. Note that between neighbouring elements c_{i} and c_{i+1} of ordered array C it isn't necessary to exist a direct edge, it is enough for the path to exist from c_{i} to c_{i+1}.

For this definition of an ordered array $C=\left(c_{1}, c_{2}, c_{3}, \ldots c_{n}\right)$, we define its length len $(C)=n$. Therefore, the length of an ordered array is equal to the number of vertices it holds. Note that the ordered array can have a length of 1 when holding a single vertex which represents both its beginning and its end.

Also, for an ordered array $C=\left(c_{1}, c_{2}, c_{3}, \ldots c_{n}\right)$ we can define its sign as $\operatorname{sgn}(C)=(-1)^{\operatorname{len}(C)+1}$. For vertices x and y of G, let's denote with $S_{x, y}$ a set of all ordered arrays that start in x and end in y.

Finally, we define the tension between nodes x and y as $\operatorname{tns}(x, y)=\sum_{C \in S_{x, y}} \operatorname{sgn}(C)$. Therefore, the tension between nodes x and y equals the sum of signs of all ordered arrays that start in x and end in y.

An integer K is given. Your task is to construct a directed acyclic graph with at most $\mathbf{1 0 0 0}$ vertices and at most 1000 edges for which $\operatorname{tns}(1, N)=K$ holds. Number N in the previous expression denotes the number of vertices in a graph. Vertices of a graph should be indexed using positive integers from 1 to N.

Input

The first line contains an integer $K\left(|K| \leq 10^{18}\right)$ from the task description.

Output

In the first line you should output the number of vertices and the number of edges of the constructed graph. Let's denote the number of vertices of that graph with $N(1 \leq N \leq 1000)$, and the number of edges with $M(0 \leq M \leq 1000)$.

In the i-th of the next M lines you should output two distinct integers X_{i} and $Y_{i}\left(1 \leq X_{i}, Y_{i} \leq N\right)$, which represent the i-th edge which is directed from vertex with index X_{i} towards vertex with index Y_{i}. Each edge must appear only once in the output.

Also, the absolute value of tension between each two nodes in the graph must be less or equal to 2^{80}.
If there are multiple solutions, output any of them.

Scoring

Subtask	Score	Constraints
1	15	$1 \leq K<500$
2	15	$-300<K \leq 1$
3	20	$\|K\|<10000$
4	60	No additional constraints.

Examples

input	input	input
0	1	2
output	output	output
66	10	68
14		12
15		13
43		14
53		15
32		54
26		26
		36
		46

Clarification of the first example: The constructed graph has 6 vertices. Ordered arrays that start in 1 and end in 6 are: $(1,6),(1,4,6),(1,5,6),(1,3,6),(1,2,6),(1,4,3,6),(1,4,2,6),(1,5,3,6)$, $(1,5,2,6),(1,3,2,6),(1,4,3,2,6),(1,5,3,2,6)$. Their lengths are (in order): $1,2,2,2,2,3,3,3,3,3,4,4$, so their signs are $-1,1,1,1,1,-1,-1,-1,-1,-1,1,1$. Therefore, the tension between 1 and 6 is equal to $-1+1+1+1+1-1-1-1-1-1+1+1=0$.

