

Secret Permutation

The Scientific Committee has hidden from you a permutation P of all the integers from 1 to N.
(3 ≤ N ≤ 256). You need to find it. Permutation P is fixed (the grader is not adaptive).

In your endeavor, you are allowed to ask queries that take as parameter another
permutation V of all the integers from 1 to N:

query(V) will return sum(i = 1..N - 1, abs(P[V[i]] - P[V[i + 1]])).

Performing a number of queries, you are to discover permutation P, or any other
permutation P' that is indistinguishable from P. Two permutations are indistinguishable if
queried in all possible ways they both yield the same answers.

Interaction
This is an interactive problem. You must submit a source file with the following constraints:

C / C++:
#include "permutationc.h"

You must include this header file in order
to properly compile your code and link it
with the Scientific Committee's code.

C / C++:
void solve(int N);

Your solution to this problem must be
written inside this function. You are free to
write and call additional functions but
you're not allowed to write a main()
function.

C / C++:
int query(int V[]);

or C++ only:
int query(std::vector<int> V);

Whenever you want to perform a query,
call this function with a permutation V of all
the integers from 1 to N as parameter. You
will be graded based on the number of
times you call this function.

C / C++:
void answer(int P[]);

or C++ only :
void answer(std::vector<int> P);

When you're confident you've discovered
permutation P, call this function with P as a
parameter. Calling this function will
terminate the program.

Note that both permutations P and V are represented as a 0-indexed int array or
std::vector<int> when supplied as parameters.

Secret Permutation (English) 1/3

Example
Sample code to illustrate the Interaction section:

C: C++:

#include "permutationc.h"

void solve(int N) {

 if (N == 2) {

 int V[] = {1, 2};

 int qAns = query(V);

 if (qAns == 1) {

 int P[] = {1, 2};

 answer(P);

 }

 }

}

#include "permutation.h"

void solve(int N) {

 if (N == 2) {

 std::vector<int> V = {1, 2};

 int qAns = query(V);

 if (qAns == 1) {

 std::vector<int> P = {1, 2};

 answer(P);

 }

 }

}

Sample grader
For local testing you can download two files from CMS: sample_grader.cpp and
permutation.h.

The Grader reads from Standard Input an integer N - the size of the hidden permutation and
N distinct integers - the hidden permutation. Then, the Grader calls the solve() function
you must implement.

At Standard Output the Grader will output:
(a) for every query() call: the queried permutation and the answer to the query;
(b) for the answer() call: the verdict (Correct or Wrong Answer), N and Q - the size of
the permutation and the number of queries you used.

Subtasks
(1) 3 ≤ N ≤ 7 (15 points)
(2) 3 ≤ N ≤ 50 (35 points)
(3) 3 ≤ N ≤ 256 (50 points)

Secret Permutation (English) 2/3

Scoring
Each of the test cases is scored as follows:
If you fail to discover one of the correct permutations, then 0% of the score is awarded.
Otherwise, let Q be the number of queries you needed to solve the test case.
(a) If Q ≤ N then 100% of the score is awarded.
(b) If N ≤ Q ≤ 2 * N queries then (100 - 40 * (Q - N) / N)% (between 60% and
100%, increasing as Q decreases) of the score is awarded.
(c) If 2 * N ≤ Q ≤ N2 queries then (60-40 * (Q - 2 * N) / (N2 - 2 * N))%
(between 20% and 60%, increasing as Q decreases) of the score is awarded.
(d) If N2 ≤ Q then 20% of the score is awarded.

The total score of this task will be rounded to 2 decimal places.

The Scientific Committee has a solution scoring over 98 points.

Secret Permutation (English) 3/3

