
hundred

3.	Get	Hundred	Points!
You	are	 taking	a	 test	with	100	multiple-choice	questions.	Each	question	 is	numbered
from	0	through	99.	The	answer	to	question	 	(for	each	 )	is	one	of	 A ,	 B ,	and	 C .
The	test	is	quite	weird	that	it	gives	you	the	information	that	 	questions	have	answer
A ,	 	questions	have	the	answer	 B ,	and	 	questions	have	the	answer	 C .

You	may	submit	up	to	100	answer	sheets.	Each	time	you	submit	an	answer	sheet,	you
will	 get	 informed	 on	 how	 many	 problems	 you	 got	 correct.	 However,	 there	 is	 a
restriction:	you	should	write	 	 A s,	 	 B s,	and	 	 C s	in	each	answer	sheet.	You	may	use
previous	results	to	write	a	new	answer	sheet	to	submit.

Write	a	program	that	finds	all	the	answers	correctly	by	using	an	appropriate	strategy.

Implementation	details

You	should	implement	the	following	function:

string	GetHundredPoints(int	A,	int	B,	int	C) 

:	the	number	of	questions	with	answer	 A 
:	the	number	of	questions	with	answer	 B 
:	the	number	of	questions	with	answer	 C 

This	function	is	called	once	for	each	test	case.
This	 function	 should	 return	 a	 string	 	 of	 length	 .	 For	 each	 ,	
should	be	the	answer	of	question	 	(one	of	 A ,	 B ,	and	 C ).

The	function	 GetHundredPoints 	can	call	the	following	grader	function:

int	Mark(string	S) 

:	your	answer	sheet.	For	each	 ,	 	should	be	your	answer	to	question
	(one	of	 A ,	 B ,	and	 C ).	The	number	of	 A s,	 B s,	and	 C s	in	 	should	be	 ,	 ,	and	 ,
respectively.
This	function	returns	the	number	of	correct	answers	in	your	answer	sheet.
This	function	can	be	called	up	to	100	times.

If	 some	 of	 the	 above	 conditions	 are	 not	 satisfied,	 your	 program	 is	 judged	 as	 Wrong
Answer .	Otherwise,	your	program	is	judged	as	 Accepted .

Hundred (1 of 3)   



Example

Suppose	the	answer	of	the	text	is	as	below	( ABCC 	x	25):

ABCCABCCABCC...ABCC 

The	grader	makes	the	following	function	call:

GetHundredPoints(25,	25,	50) 

Let	us	consider	the	following	calls	to	the	function	 Mark :

Mark("CACBCACB...CACB") 	( CACB 	x	25):	The	function	returns	 .
Mark("ABAB...ABCC...CC") 	( AB 	x	25,	 C 	x	50):	The	function	returns	 .

The	answer	is	 ABCCABCCABCC...ABCC .

Constraints

In	 this	 problem,	 the	 grader	 is	 NOT	 adaptive.	 This	 means	 the	 answers	 to	 all	 the
problems	 are	 fixed	 at	 the	 beginning	 of	 the	 running	 of	 the	 grader	 and	 they	 do	 not
depend	on	the	queries	asked	by	your	solution.

Subtasks

1.	 (33	points)	
2.	 (67	points)	No	additional	constraints.

Sample	grader

You	can	download	the	sample	grader	package	on	the	same	page	you	downloaded	the
problem	statement.	(scroll	down	if	you	don't	see	the	attachment)

If	you	use	IDEs	like	Visual	Studio,	Eclipse	or	Code::Blocks,	then	import	 hundred.cpp ,
hundred.h 	and	 grader.cpp 	 into	one	project	and	you	will	be	able	to	compile	all	these
files	at	once.

If	you	want	to	compile	by	yourself,	refer	to	the	compilation	commands	in	the	statement
page.

You	should	submit	only	 hundred.cpp .

Hundred (2 of 3)   



Input	format

line	1:	

Output	format

If	your	program	is	 judged	as	 Accepted ,	 the	sample	grader	prints	 Correct 	 in	the	first
line	and	 	in	the	second	line,	with	 	the	number	of	calls	to	 Mark .

If	 your	 program	 is	 judged	 as	 Wrong	 Answer ,	 the	 sample	 grader	 prints	 the	 error
message	in	the	first	line.

Hundred (3 of 3)   


