Day 1 Task 3: Quality of Living

Cities in Alberta tend to be laid out as rectangular grids of blocks. Blocks are labeled with coordinates 0 to $\mathbf{R}-1$ from north to south and 0 to $\mathbf{C}-1$ from west to east.

The quality of living in each particular block has been ranked by a distinct number, called quality rank, between 1 and $\mathbf{R} * \mathbf{C}$, where 1 is the best and $\mathbf{R} * \mathbf{C}$ is the worst.

The city planning department wishes to identify a rectangular set of blocks with dimensions \mathbf{H} from north to south and \mathbf{W} from west to east, such that the median quality rank among all blocks in the rectangle is the best. H and Ware odd numbers not exceeding \mathbf{R} and \mathbf{C} respectively. The median quality rank among an odd number of quality ranks is defined to be the quality rank \mathbf{m} in the set such that the number of quality ranks better than \mathbf{m} equals the number of quality ranks worse than \mathbf{m}.

You are to implement a procedure $\operatorname{rectangle}(\mathbf{R}, \mathbf{C}, \mathbf{H}, \mathbf{W}, \mathbf{Q})$ where \mathbf{R} and \mathbf{C} represent the total size of the city, \mathbf{H} and \mathbf{W} represent the dimensions of the set of blocks, and \mathbf{Q} is an array such that $\mathbf{Q}[\mathbf{a}][\mathbf{b}]$ is the quality rank for the block labeled \mathbf{a} from north to south and \mathbf{b} from west to east.

Your implementation of rectangle must return a number: the best (numerically smallest) possible median quality rank of an \mathbf{H} by \mathbf{W} rectangle of blocks.

Each test run will only call rectangle once.

Example 1

```
R=5, C=5, H=3, W=3,
Q= 5 11 12 16 25
    17}18\quad2\quad71
    4 23 20 3 1
    24 21 19 14 9
        6 22 8 13 15
```

For this example, the best (numerically smallest) median quality rank of 9 is achieved by the middle-right rectangle of \mathbf{Q} shown in bold. That is,
rectangle ($\mathrm{R}, \mathrm{C}, \mathrm{H}, \mathrm{W}, \mathrm{Q}$) $=9$

Example 2

$\mathbf{R}=2$,	$\mathbf{C}=6$,	$\mathbf{H}=1$,	$\mathbf{W}=5$,		
$\mathbf{Q}=$	6	1	2	11	7
9	5	5			

For this example the correct answer is 5 .

Subtask 1 [20 points]

Assume R and C do not exceed 30 .

Subtask 2 [20 points]

Assume R and C do not exceed 100.
Subtask 3 [20 points]
Assume R and C do not exceed 300.

Subtask 4 [20 points]

Assume R and C do not exceed 1000.
Subtask 5 [20 points]
Assume R and C do not exceed 3000 .

Implementation Details

- Implementation folder: /home/ioi2010-contestant/quality/
- To be implemented by contestant: quality.c or quality.cpp or quality.pas
- Contestant interface: quality.h or quality.pas
- Grader interface: none
- Sample grader: grader.c or grader.cpp or grader.pas
- Sample grader input: grader.in. 1 grader.in. 2 etc.

Note: The first line of input contains: R, C, H, W The following lines contain the elements of Q, in row-major order.

- Expected output for sample grader input: grader. expect. 1 grader. expect. 2 etc.
- Compile and run (command line): runc grader.c or runc grader. cpp or runc grader.pas
- Compile and run (gedit plugin): Control- R, while editing any implementation file.
- Submit (command line): submit grader.c or submit grader.cpp or submit grader.pas
- Submit (gedit plugin): Control-J, while editing any implementation or grader file.

