medians

100 points

Source code:	medians.c, medians.cpp, medians.pas
Input file:	medians.in
Output file:	medians.out
Time limit:	0.3 seconds
Memory limit:	64 MB

Let A be a permutation of $1,2,3 \ldots, 2 * \mathrm{~N}-1$.
We define the prefix medians of A as an array B with N elements: where $\mathrm{B}[\mathrm{i}]$ is the median of $\mathrm{A}[1]$, $\mathrm{A}[2], \ldots, \mathrm{A}\left[2 *_{\mathrm{i}-1]}\right.$.
Note: The median of a list of M numbers (where M is odd) can be found by sorting the numbers and picking the middle one.

Task

You are given N and the array B. You are asked to determine a permutation A whose prefix medians are precisely B.

Description of input

The input file contains 2 lines. The first line contains one integer, N . The second line describes B : N integers, separated by space.

Description of output

The output file should contain A: one line with $2 * \mathrm{~N}-1$ integers separated by space. If there are multiple permutations A leading to the same input array B, you may output any one. In all test data, there will always be at least one solution.

Constraints

- $1 \leq A[i] \leq 2 *_{N}-1$, for every i from 1 to $2 *_{N}-1$
- $1 \leq \mathrm{B}[\mathrm{i}] \leq 2 * \mathrm{~N}-1$, for every i from 1 to N
- $1 \leq \mathrm{N} \leq 100000$
- 60% of the tests will have $\mathrm{N} \leq 1000$

Example

medians.in	medians. out					
5				1	9	3
1	3	3	4	5	4	7

