## Task 1: Snail

A snail is stuck at the bottom of a well which is of height $H$. Initially, the snail is at height 0 and it tries to get out. Well, being at the bottom (i.e., height 0 ) has its upsides. For instance, the snail can't slide down any further (cannot slide into negative height).

A day is made out of $N$ phases. During each phase, the snail will either try to climb up a certain amount, or rest and slide down a certain amount. The snail knows how much it would move in each phase and this is denoted by $P_{i}$. If positive, this means that the snail will travel upwards, if negative, the snail will slide downwards (until height 0 ), if zero, the snail will maintain its height.

Find out the first day and phase such that the snail reaches a height of $H$ to exit the well.
Warning: For C++ users, remember to use long long data type (and \%lld format specifier for scanf and printf), for Java users, remember to use long data type.

## Input format

Your program must read from standard input.
The first line of input contains two positive integers $H$, denoting the height of the well and $N$, denoting the number of phases per day.

The next line of input contains $N$ signed integers (separated by spaces) describing the snail's routine: $P_{0}, P_{1}, P_{2}, \ldots, P_{N-1}$ where $P_{i}$ denotes the amount the snail travels in phase $i$.

## Output format

Your program must print to standard output.
Your program should print one line with two integers, separated by a space.
If the snail can reach the top of the well (i.e. height $H$ ) for the first time on the phase $P$ of day $D$, your output should be $D$ followed by $P$.

Otherwise, if the snail will always be stuck in the well, your output should be -1 followed by -1 .

## Subtasks

The maximum execution time on each instance is 1.0 s.
For all subtasks, $1 \leq H \leq 10^{12},-10^{12} \leq P_{i} \leq 10^{12}$ and $1 \leq N \leq 10000$.
Your program will be tested on sets of input instances as follows:

| Subtask | Marks | Limits |
| :---: | :---: | :---: |
| 1 | 11 | $N=1$ |
| 2 | 9 | $P_{i}=P_{0}$ for all $i$. |
| 3 | 25 | $H \times N \leq 10000$ |
| 4 | 17 | $P_{i} \geq 0$ for all $i$ |
| 5 | 38 | No further restrictions |

## Sample Testcase 1

This testcase is valid for all subtasks.

|  | Input | 2 | Output |
| :--- | :--- | :--- | :--- |
| 3 | 1 | 0 |  |
| 1 |  |  |  |

## Explanation

After phase 0 of day 0 , the snail has climbed 1 unit.
After phase 0 of day 1 , the snail has climbed 1 unit to a height of $1+1=2$ units.
After phase 0 of day 2 , the snail has climbed 1 unit to a height of $1+2=3$ units and exits the well.

Sample Testcase 2
This testcase is valid for subtasks $1,2,3,5$.

| Input | Output <br> -1 |  |
| :--- | :--- | :--- |

## Explanation

The snail cannot climb upwards at all, hence, the snail is stuck in the well.

## Sample Testcase 3

This testcase is valid for subtasks 3,5 .

|  | Input |  | Output |
| :--- | :--- | :--- | :--- |
| 5 | 2 | 1 | 0 |

## Explanation

After phase 0 of day 0 , the snail has climbed 4 units.
After phase 1 of day 0 , the snail has slid down 2 units to a height of 2 units.
In phase 0 of day 1 , the snail climbs 3 more units, up to a height of $2+3=5$ units, and exits the well.

