International Olympiad in Informatics 2015
26th July - 2nd August 2015
Almaty, Kazakhstan
Day 1
teams
Language: en-ISC

Teams

There is a class of N students, numbered 0 through $N-1$. Every day the teacher of the class has some projects for the students. Each project has to be completed by a team of students within the same day. The projects may have various difficulty. For each project, the teacher knows the exact size of a team that should work on it.

Different students may prefer different team sizes. More precisely, student i can only be assigned to a team of size between $A[i]$ and $B[i]$ inclusive. On each day, a student may be assigned to at most one team. Some students might not be assigned to any teams. Each team will work on a single project.

The teacher has already chosen the projects for each of the next Q days. For each of these days, determine whether it is possible to assign students to teams so that there is one team working on each project.

Example

Suppose there are $N=4$ students and $Q=2$ days. The students' constraints on team sizes are given in the table below.

student	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
A	1	2	2	2
B	2	3	3	4

On the first day there are $M=2$ projects. The required team sizes are $K[0]=1$ and $K[1]=3$. These two teams can be formed by assigning student 0 to a team of size 1 and the remaining three students to a team of size 3 .

On the second day there are $M=2$ projects again, but this time the required team sizes are $K[0]=1$ and $K[1]=1$. In this case it is not possible to form the teams, as there is only one student who can be in a team of size 1 .

Task

You are given the description of all students: N, A, and B, as well as a sequence of Q questions one about each day. Each question consists of the number M of projects on that day and a sequence K of length M containing the required team sizes. For each question, your program must return whether it is possible to form all the teams.

You need to implement the functions init and can:

- init ($\mathrm{N}, \mathrm{A}, \mathrm{B}$) - The grader will call this function first and exactly once.
- N : the number of students.
- A: an array of length $\mathrm{N}: \mathrm{A}[\mathrm{i}]$ is the minimum team size for student \boldsymbol{i}.
- B: an array of length N : $\mathrm{B}[\mathrm{i}]$ is the maximum team size for student \boldsymbol{i}.
- The function has no return value.
- You may assume that $1 \leq \mathrm{A}[\mathrm{i}] \leq \mathrm{B}[\mathrm{i}] \leq \mathrm{N}$ for each $i=0, \ldots, \mathrm{~N}-1$.
- can (M, K) - After calling init once, the grader will call this function Q times in a row, once for each day.
- M: the number of projects for this day.
- K : an array of length M containing the required team size for each of these projects.
- The function should return 1 if it is possible to form all the required teams and 0 otherwise.
- You may assume that $1 \leq \mathrm{M} \leq N$, and that for each $i=0, \ldots, \mathrm{M}-1$ we have $1 \leq \mathrm{K}$ [i] $\leq N$. Note that the sum of all K [i] may exceed N.

Subtasks

Let us denote by S the sum of values of M in all calls to can (M, K).

subtask	points	N	\boldsymbol{Q}	Additional Constraints
1	21	$1 \leq N \leq 100$	$1 \leq Q \leq 100$	none
2	13	$1 \leq N \leq 100,000$	$Q=1$	none
3	43	$1 \leq N \leq 100,000$	$1 \leq Q \leq 100,000$	$S \leq 100,000$
4	23	$1 \leq N \leq 500,000$	$1 \leq Q \leq 200,000$	$S \leq 200,000$

Sample grader

The sample grader reads the input in the following format:

- line $1: \mathrm{N}$
- lines $2, \ldots, \mathrm{~N}+1$: $\mathrm{A}[\mathrm{i}] \mathrm{B}[\mathrm{i}]$
- line $\mathrm{N}+2$: Q
- lines $N+3, \ldots, N+Q+2$: MK[0] K[1] $\ldots \mathrm{K}[\mathrm{M}-1]$

For each question, the sample grader prints the return value of can.

