Worst Reporter 4

Bitaro is a professional reporter and writes reports on competitive programming contests. Several days later, an international competitive programming contest will be held. Bitaro is planning to write reports on it.

There will be N contestants, numbered from 1 to N. Each contestant has an integer called the rating, which measures their strength in competitive programming. A rating is an integer between 1 and 1000000000 , inclusive.
Bitaro conducted interviews with the contestants. He obtained the following information.
The rating of the contestant $i(1 \leq i \leq N)$ is greater than or equal to the rating of the contestant A_{i} $\left(1 \leq A_{i} \leq N\right)$. Here it might happen that $A_{i}=i$.

After the interviews, Bitaro received a list of the ratings of the contestants from a company managing the rating system. In the list, the following information was written.

The rating of the contestant $i(1 \leq i \leq N)$ is equal to H_{i}.
Bitaro was trying to write a report based on the above information. However, it turned out that the list of the ratings of the contestants might contain errors.

Because the deadline is coming up soon, Bitaro has no time to obtain a correct list of the ratings. Therefore, Bitaro decided to change the ratings of some contestants in the list so that it will not contradict the information obtained by the interviews. The cost to change the rating of the contestant $i(1 \leq i \leq N)$ in the list is C_{i}. That is, Bitaro can change the rating of the contestant i in the list into any integer between 1 and 1000000000 , inclusive, by paying a cost of C_{i}. In order to meet the deadline, Bitaro wants to minimize the total cost to change the ratings in the list.

Write a program which, given the number of contestants, information obtained by interviews, the list containing the ratings, and the cost to change the rating of each contestant in the list, calculates the minimum total cost to change the ratings in the list so that it will not contradict the information obtained by the interviews.

The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
Spring Training Camp/Qualifying Trial March 20-23, 2021 (Komaba, Tokyo)

Input

Read the following data from the standard input. Given values are all integers

$$
\begin{aligned}
& N \\
& A_{1} H_{1} C_{1} \\
& \vdots \\
& A_{N} H_{N} C_{N}
\end{aligned}
$$

Output

Write one line to the standard output. Output the minimum total cost.

Constraints

- $2 \leq N \leq 200000$.
- $1 \leq A_{i} \leq N(1 \leq i \leq N)$.
- $1 \leq H_{i} \leq 1000000000(1 \leq i \leq N)$.
- $1 \leq C_{i} \leq 1000000000(1 \leq i \leq N)$.

Subtasks

1. (14 points) $N \leq 5000, \quad A_{1}=1, \quad A_{i} \leq i-1(2 \leq i \leq N)$.
2. (65 points) $A_{1}=1, \quad A_{i} \leq i-1(2 \leq i \leq N)$.
3. (21 points) No additional constraints.

Sample Input and Output

$\left.\begin{array}{|l|l|}\hline \text { Sample Input 1 } & \text { Sample Output 1 } \\ \hline 6 & \\ 1 & 6 \\ 5 & 14 \\ 1 & 3 \\ 6 & \\ 1 & 8 \\ 4 & 4 \\ 3 & 4 \\ 9 & 5 \\ 2 & 5\end{array}\right) 6$

If Bitaro changes the ratings of the contestants in the list in the following way, it will not contradict the information obtained by the interviews.

- Change the rating of the contestant 1 from 6 to 1 . The cost is 5 .
- Change the rating of the contestant 3 from 8 to 4 . The cost is 4 .
- Change the rating of the contestant 5 from 2 to 1000000000 . The cost is 5 .

Then the total cost is $5+4+5=14$. Since it is the minimum possible value, output 14 .
This sample input satisfies the constraints of Subtasks 1, 2, 3 .
$\left.\begin{array}{|ll|l|}\hline \text { Sample Input 2 } & \text { Sample Output 2 } \\ \hline 5 & & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \\ 4 & 3 & 1 \\ 3 & 3 & 1 \\ 4 & 3 & 1\end{array}\right)$

In this sample input, the ratings of the contestants in the list do not contradict the information obtained by the interviews. Thus, the minimum total cost is 0 . Hence, output 0 .

The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
Spring Training Camp/Qualifying Trial March 20-23, 2021 (Komaba, Tokyo)

Sample Input 3	Sample Output 3	
20	2711043927	
1	7	381792936
1	89	964898447
1	27	797240712
3	4	299745243
2	18	113181438
2	20	952129455
4	34	124298446
4	89	33466733
7	40	109601410
5	81	902931267
2	4	669879699
8	23	785166502
8	1	601717183
8	26	747624379
1	17	504589209
9	24	909134233
16	56	236448090
8	94	605526613
5	90	481898834
9	34	183442771

This sample input satisfies the constraints of Subtasks 1, 2, 3 .

The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
Spring Training Camp/Qualifying Trial March 20-23, 2021 (Komaba, Tokyo)

Sample Input 4	Sample Output 4	
20		4012295156
15	62	418848971
13	5	277275513
14	60	80376452
12	14	256845164
12	42	481331310
6	86	290168639
3	98	947342135
3	19	896070909
16	39	48034188
8	29	925729089
18	97	420006994
13	51	454182928
19	61	822405612
13	37	148425187
15	77	474094143
14	27	272926693
18	43	566552069
9	93	790433300
10	73	61654171
14	28	334498030

