2circles

100 points
Source code: 2circles.c, 2circles.cpp, 2circles.pas
Input file:
Output file:
Time limit:
Memory limit:

2circles.in
2circles.out
4 seconds 64MB

Task

We will consider a convex polygon with N vertices. We wish to find the maximum radius R such that two circles of radius R can be placed entirely inside the polygon without overlapping.

Description of input

The first line of input contains the number N. Each of the next N lines contains a pair of integers x_{i}, $y_{i}-$ representing the coordinates of the $i^{\text {th }}$ point, separated by space.

Description of output

You should output a single number R - the desired radius. Output R with a precision of 3 decimals. You will pass a test if the output differs from the true answer by at most 0.001 .

Constraints

- $3 \leq \mathrm{N} \leq 50000$
- $-10^{7} \leq \mathrm{x}_{\mathrm{i}} \leq 10^{7}$
- $-10^{7} \leq y_{i} \leq 10^{7}$
- The points are given in trigonometric (anti-clockwise) order.
- For $\mathbf{1 0 \%}$ of tests $\mathbf{N}=3$
- For $\mathbf{4 0 \%}$ of tests $\mathbf{N} \leq 250$

Example

2circles.in	2circles.out	Explanation:
4	0.293	The maximum radius is obtained when the centers of the two circles are placed on one of the square's diagonals. The radius can be calculated exactly and it is:
1	0	
1	1	
0	1	$\frac{\sqrt{2}}{2 *(1+\sqrt{2})} \approx 0.293$

2circles.in	2circles.out	2circles.in	2circles.out
4	0.500	6	2.189
0	0		0
3	0	8	0
3		8	6
0	1	4	8
		2	8
		0	4

