Task 3: LightningRod

Singapore has anywhere between 171 and 186 lightning days on average a year. Each square kilometer of land in Singapore can be struck up to 16 times annually. This makes Singapore one of the lightning capitals of the world.

Gug the architect surveys N buildings from left to right, and notices that the top of building i, from left to right, has coordinates $\left(X_{i}, Y_{i}\right)$. Gug wants to protect all the buildings by planting lightning rods on top of some buildings. A lightning rod protects the building it is planted on, and all buildings that lie on or under the 45° line of depression leftwards and rightwards. In other words, a lightning rod on building i protects building j if and only if $\left|X_{i}-X_{j}\right| \leq Y_{i}-Y_{j}$.

Help Gug find out the minimum number of lightning rods required to protect all buildings.

Input format

Your program must read from standard input.

The input starts with a single integer, N, in a single line. N denotes the total number of buildings.
N lines will then follow with 2 integers each, the $i^{\text {th }}$ line will contain X_{i} and Y_{i}. This indicates that the peak of the $i^{\text {th }}$ building is at $\left(X_{i}, Y_{i}\right)$. You can assume $X_{i} \leq X_{i+1}$, in other words, X_{i} is increasing.

Note: The input size for subtasks 1,6 and 7 is extremely large, so it is only possible to obtain full credit using C++ fast input. The attachment consists of a template that uses C++ fast input to read from standard input.

Output format

Your program must print to standard output.
Output a single integer, denoting the minimum number of lightning rods required to protect all buildings.

Subtasks

The maximum execution time on each instance is 1.0 s . Your program will be tested on input instances that satisfy the following restrictions:

Subtask	Marks	\boldsymbol{N}	$\boldsymbol{X}_{\boldsymbol{i}}, \boldsymbol{Y}_{\boldsymbol{i}}$
1	4	$2 \leq N \leq 10000000$	$0 \leq X_{i} \leq 10^{9}, Y_{i}=1$
2	7	$N=2$	$0 \leq X_{i}, Y_{i} \leq 10^{9}$
3	12	$2 \leq N \leq 20$	$0 \leq X_{i}, Y_{i} \leq 10^{9}$
4	21	$2 \leq N \leq 2000$	$0 \leq X_{i}, Y_{i} \leq 10^{9}$
5	26	$2 \leq N \leq 200000$	$0 \leq X_{i}, Y_{i} \leq 10^{9}$
6	10	$2 \leq N \leq 10000000$	$X_{i}=i, 0 \leq Y_{i} \leq 1$
7	20	$2 \leq N \leq 10000000$	$0 \leq X_{i}, Y_{i} \leq 10^{9}$

Sample Testcase 1

This testcase is valid for all subtasks.

	Input		Output
2	1	2	
2	1		

Sample Testcase 1 Explanation

Both buildings must have lightning rods.

Sample Testcase 2

This testcase is only valid for subtasks 2 to 7 .

	Input		Output
2		1	
1	0		
2	1		

Figure 3: Sample 3, where Gug sees 4 buildings.

Sample Testcase 2 Explanation

A lightning rod can be planted on building 2 .

Sample Testcase 3

This testcase is only valid for subtasks $3,4,5,7$.
$\left.\begin{array}{|ll|l|}\hline & \text { Input } & \text { Output } \\ \hline 4 & & 2 \\ \hline & 1 & 2\end{array}\right)$

Sample Testcase 3 Explanation

Lightning rods can be planted on buildings 1 and 3 (see Figure 3).

