Task: Zagrade

An expression is a string of consisting only of properly paired brackets. For example, "()()" and "(()())" are expressions, whereas ") (" and "() (" are not. We can define expressions inductively as follows:

- "()" is an expression.
- If a is an expression, then " (a) " is also an expression.
- If a and b are expressions, then " $a b$ " is also an expression.

A tree is a structure consisting of n nodes denoted with numbers from 1 to n and $n-1$ edges placed so there is a unique path between each two nodes. Additionally, a single character is written in each node. The character is either an open bracket " (" or a closed bracket ")". For different nodes a and $b, w_{a, b}$ is a string obtained by traversing the unique path from a to b and, one by one, adding the character written in the node we're passing through. The string $w_{a, b}$ also contains the character written in the node a (at the first position) and the character written in the node b (at the last position).

Find the total number of pairs of different nodes a and b such that $w_{a, b}$ is a correct expression.

Input

The first line of contains the an integer n - the number of nodes in the tree. The following line contains an n-character string where each character is either ")" or " (", the $j^{t h}$ character in the string is the character written in the node j. Each of the following $n-1$ lines contains two different positive integers x and $y(1 \leq x, y \leq n)$ - the labels of nodes directly connected with an edge.

Output

Output the required number of pairs.

Scoring

Subtask Score Constraints
$1 \quad 10 \quad n \leq 1000$
$230 \quad n \leq 300000$, the tree is a chain - each node $x=1, \ldots, n-1$ is connected
to node $x+1$.
$3 \quad 60 \quad n \leq 300000$

Sample tests

input	input	input
4	5	7
(())	()) () () () (
12	12	12
23	23	13
34	24	16
	35	24
output		45
2	output	57
	3	output
		6

