Task: Zagrade

An *expression* is a string of consisting only of properly paired brackets. For example, "()()" and "(()())" are expressions, whereas ")(" and "()(" are not. We can define expressions inductively as follows:

- "()" is an expression.
- If a is an expression, then "(a)" is also an expression.
- If a and b are expressions, then "ab" is also an expression.

A tree is a structure consisting of n nodes denoted with numbers from 1 to n and n-1 edges placed so there is a unique path between each two nodes. Additionally, a single character is written in each node. The character is either an open bracket "(" or a closed bracket ")". For different nodes a and b, $w_{a,b}$ is a string obtained by traversing the unique path from a to b and, one by one, adding the character written in the node w (represented by the string $w_{a,b}$ also contains the character written in the node a (at the first position) and the character written in the node b (at the last position).

Find the total number of pairs of different nodes a and b such that $w_{a,b}$ is a correct expression.

Input

The first line of contains the an integer n — the number of nodes in the tree. The following line contains an *n*-character string where each character is either ")" or "(", the j^{th} character in the string is the character written in the node j. Each of the following n-1 lines contains two different positive integers xand y $(1 \le x, y \le n)$ — the labels of nodes directly connected with an edge.

Output

Output the required number of pairs.

Scoring

Subtask	Score	Constraints
1	10	$n \le 1000$
2	30	$n \leq 300000$, the tree is a <i>chain</i> — each node $x = 1, \ldots, n-1$ is connected to node $x + 1$.
3	60	$n \leq 300000$

Sample tests

input	input	input
4 (()) 1 2 2 3 3 4 output 2	5 ())((1 2 2 3 2 4 3 5 output 3	7)()()()((1 2 1 3 1 6 2 4 4 5 5 7 output 6