2021 Canadian Computing Olympiad
 Day 1, Problem 2
 Weird Numeral System

Time Limit: 1.5 seconds

Problem Description

Alice enjoys thinking about base- K numeral systems (don't we all?). As you might know, in the standard base- K numeral system, an integer n can be represented as $d_{m-1} d_{m-2} \ldots d_{1} d_{0}$ where:

- Each digit d_{i} is in the set $\{0,1, \ldots, K-1\}$, and
- $d_{m-1} K^{m-1}+d_{m-2} K^{m-2}+\cdots+d_{1} K^{1}+d_{0} K^{0}=n$.

For example, in standard base-3, you would write 15 as 120 , since $(1) \cdot 3^{2}+(2) \cdot 3^{1}+(0) \cdot 3^{0}=$ 15.

But standard base- K systems are too easy for Alice. Instead, she's thinking about weird-base-K systems.

A weird-base- K system is just like the standard base- K system, except that instead of using the digits $\{0, \ldots, K-1\}$, you use $\left\{a_{1}, a_{2}, \ldots, a_{D}\right\}$ for some value D. For example, in a weird-base-3 system with $a=\{-1,0,1\}$, you could write 15 as $1-1-10$, since $(1) \cdot 3^{3}+$ $(-1) \cdot 3^{2}+(-1) \cdot 3^{1}+(0) \cdot 3^{0}=15$.

Alice is wondering how to write Q integers, n_{1} through n_{Q}, in a weird-base- K system that uses the digits a_{1} through a_{D}. Please help her out!

Input Specification

The first line contains four space-separated integers, K, Q, D, and $M(2 \leq K \leq 1000000$, $1 \leq Q \leq 5,1 \leq D \leq 5001,1 \leq M \leq 2500)$.

The second line contains D distinct integers, a_{1} through $a_{D}\left(-M \leq a_{i} \leq M\right)$.
Finally, the i-th of the next Q lines contains $n_{i}\left(-10^{18} \leq n_{i} \leq 10^{18}\right)$.
For 8 of the 25 available marks, $M=K-1 \leq 400, K=D \leq 801$.

Output Specification

Output Q lines, the i-th of which is a weird-base- K representation of n_{i}. If multiple representations are possible, any will be accepted. The digits of the representation should be separated by spaces. Note that 0 must be represented by a non-empty set of digits.

If there is no possible representation, output IMPOSSIBLE.

Sample Input 1
3331
-101
15
8
-5
Output for Sample Input 1
1-1 -1 0
$10-1$
-111

Explanation of Output for Sample Input 1
We have:
$(1) \cdot 3^{3}+(-1) \cdot 3^{2}+(-1) \cdot 3^{1}+(0) \cdot 3^{0}=15$,
(1) $\cdot 3^{2}+(0) \cdot 3^{1}+(-1) \cdot 3^{0}=8$, and
$(-1) \cdot 3^{2}+(1) \cdot 3^{1}+(1) \cdot 3^{0}=-5$.
Sample Input 2
10132
0 2-2
17

Output for Sample Input 2
IMPOSSIBLE

