Task: Svjetlost

In a plane, if we have a convex polygon P, and we place a source of light at a point T located outside the polygon, it lights up some edges of P - if A and B are two consecutive polygon vertices, then the edge $\overline{A B}$ is lit up if the area of the triangle $\triangle T A B$ is not zero, and if it doesn't intersect the inside of the polygon. The brightness of the polygon is the sum of the lengths of lit up edges, and the maximal brightness of a polygon is the maximal possible brightness we can achieve if we select an optimal point T. The distance between point T and the polygon can be arbitrary, and the coordinates of point T don't necessarily need to be integers.

Figure 4: Polygons P, P_{1}, P_{2} and P_{3} from the second test case, the optimal brightness is marked.

You are given a convex polygon P whose vertices are, respectively, points $A_{1}, A_{2}, \ldots, A_{n}$. The polygon is changed in q steps - in the j th step, we delete an existing polygon vertex, and obtain a new polygon P_{j}. More precisely, the vertices of polygon P_{j} are the vertices of P that haven't been deleted yet, and their order is the same as in polygon P. It is easy to see that each polygon P_{j} is convex too.

Determine the maximal brightness of the polygon P and each of the obtained polygons $P_{1}, P_{2}, \ldots, P_{q}$.

Input

The first line of input contains the positive integer n - the number of vertices of the initial polygon P. The j th of the following n lines contains two integers x_{j} and $y_{j}\left(-10^{9} \leq x_{j}, y_{j} \leq 10^{9}\right)$ - the coordinates of vertex A_{j}. The following line contains the integer $q(0 \leq q \leq n-3)$ - the number of steps. The j th of the following q lines contains the integer $k_{j}\left(1 \leq k_{j} \leq n\right)$ that denotes that in the j th step we delete the vertex $A_{k_{j}}$. You can assume that the vertices A_{j} in polygon P are given counter-clockwise, that two consecutive parallel lines do not exist, and that all indices k_{j} are mutually distinct.

Output

You must output $q+1$ lines. The first line must contain the maximal brightness of the initial polygon P, and the j th of the following q lines must contain the maximal brightness of polygon P_{j} obtained after j steps. For each line of output, an absolute and relative deviation from the official solution by 10^{-5} will be tolerated.

Scoring

Subtask Score Constraints

1	12	$n \leq 100$
2	14	$n \leq 2000$
3	14	$n \leq 100000, q=0$
4	29	$n \leq 100000$, for each $j=1, \ldots, q-1$ it holds $k_{j}<k_{j+1}$
5	31	$n \leq 100000$

Sample tests

input	input
4	6
00	22
100	40
1010	6 0
010	82
1	84
2	2 4
output	3
20.000000	1
24.142136	4
	3
	output
	10.828427
	11.300563
	10.944272
	11.656854

