Task Pizza

After a long day and miserable at work, Mirko decided to order a pizza for dinner to cheer himself up. In a big pile of papers on his desk, he found a flyer of a nearby pizza restarant.

The restarant offers m different pizzas. Pizza toppings are labeled with positive integers. i-th pizza has k_{i} toppings, with labels $b_{i, 1}, b_{i, 2}, \ldots, b_{i, k_{i}}$.

Mirko is very picky when it comes to food. He doesn't like n toppings, those with labels $a_{1}, a_{2}, \ldots, a_{n}$, so he wants to order a pizza that doesn't contain any of those toppings. Determine the number of pizzas that Mirko can order.

Input

The first line contains an integer $n(1 \leq n \leq 100)$, the number of toppings, followed by n distinct integers $a_{i}\left(1 \leq a_{i} \leq 100\right)$, the labels of toppings Mirko dislikes.

The second line contains an integer $m(1 \leq m \leq 100)$, the number of pizzas.
The following m lines describe the pizzas. The i-th line contains an integer $k_{i}\left(1 \leq k_{i} \leq 100\right)$, the numer of toppings, followed by k_{i} distinct integers $b_{i, j}\left(1 \leq b_{i, j} \leq 100\right)$, the labels of toppings on the i-th pizza.

The pizzas, i.e. the sets of toppings, will be distinct.

Output

Output the number of pizzas that Mirko can order.

Scoring

In test cases worth 20 points it holds $n=1$ and $k_{1}=k_{2}=\cdots=k_{m}=1$.

Examples

input	input	input
12	212	14
3	4	3
11	214	11
12	3123	12
13	234	13
output	3357	output
2	output	3
	2	

