Problem C. Street Lamps

Time limit: $\quad 5$ seconds
Memory limit: $\quad 512$ megabytes

There is a self-driving taxi in Innopolis that drives on a long street. The street consists of $n+1$ taxi stops and n segments connecting adjacent stops. There is a street lamp on each segment. The i-th lamp illuminates the segment connecting stop i and $i+1$, if the lamp is on. Otherwise, it's dark on the segment.

For the purpose of safety the self-driving taxi can only drive on the segments that are illuminated. In other words, the taxi can drive from the stop a to the stop $b(a<b)$, if the segments between a and $a+1$, $a+1$ and $a+2, \ldots, b-1$ and b are illuminated.

After breakdowns or repairs the street lamps can turn on or turn off. You are given the initial state of the lamps at the moment 0 . After that in the end of hours $1,2, \ldots, q$ events take place. Exactly one event takes place in the end of each hour, there are two types of events:

- "toggle i " - the i-th lamp changes its state: if the lamp was on, it turns off, if the lamp was off, it turns on.
- "query $a b$ " - the head of the self-driving taxi department wonders, what is the total time in hours from 0 up to the current time when the taxi was able to drive from stop a to stop b.

Help the head of self-driving taxi department to answer the questions.

Input

The first line contains two integers n and $q(1 \leq n, q \leq 300000)$ - the number of street lamps and number of events.

The second line contains a string s that describes the initial state of the lamps $(|s|=n), s_{i}$ is ' 1 ' if the i-th lamp is on, and s_{i} is ' 0 ' if the i-th lamp is off.

Each of the following q lines describes events. The i-th of these lines describes an event that takes place in the end of the hour i.

- "toggle i " $(1 \leq i \leq n)$ - the i-th lamp changes its state.
- "query $a b$ " $(1 \leq a<b \leq n+1)$ - calculate the number of hours until the current moment when the taxi was able to drive from stop a to stop b.

At least one of the events is query.

Output

For each query event print a single integer: the answer to the question.

Scoring

Subtask 1 (points: 20)
$n \leq 100, q \leq 100$.

Subtask 2 (points: 20)

For all "query $a b$ " events $b-a=1$.
Subtask 3 (points: 20)
For all "toggle i " events the i-th lamp is turning on.

Subtask 4 (points: 20)
All toggle events happen before all query events.
Subtask 5 (points: 20)
No additional constraint.

Example

	input	
5 7		1
11011		2
query 1 2	0	
query 1 2	0	
query 1 6		1
query 3 4	2	
toggle 3		
query 3 4		
query 1 6		

Note

In the sample test:

Hour	Lamp states	Query	Answer
1	11011	query 1 2	1
2	11011	query 1 2	1 and 2
3	11011	query 1 6	None
4	11011	query 3 4	None
5	11011	toggle 3	
6	11111	query 3 4	6
7	11111	query 1 6	6 and 7

