

Naan

JOI Curry Shop is famous for serving very long naans. They have *L* kinds of flavours, numbered from 1 to *L*, to flavour naans. "JOI Special Naan" is the most popular menu in the shop. The length of the naan is *L* cm. We define "point *x*" as the point on the naan which distant *x* cm from the left end of the naan. The segment between point j - 1 and point *j* are flavoured by flavour $j (1 \le j \le L)$.

N people came to JOI Curry Shop. Their preferences are different from other. Specifically, when *i* th $(1 \le j \le L)$ person eat naan with flavour j $(1 \le j \le L)$, she will get $V_{i,j}$ happiness per 1 cm.

They ordered only one JOI Special Naan. They will share the naan in the following manner:

- 1. Choose N 1 fractions X_1, \ldots, X_{N-1} , which satisfies $0 < X_1 < X_2 < \cdots < X_{N-1} < L$.
- 2. Choose N integers P_1, \ldots, P_N . This have to be a permutation of $1, \ldots, N$.
- 3. For each k ($1 \le k \le N 1$), cut the naan at point X_k . Thus, naan will be separated into N pieces.
- 4. For each k ($1 \le k \le N$), give the piece between point X_{k-1} and point X_k . We consider X_0 as 0 and X_N as L.

We want to distribute the naan fairly. We say a distribution is **fair** if each person get more than or equal to one *N* th amount of happiness compared to the amount of happiness she will get when she eat whole JOI Special Naan.

Given the information of preferences of N people, determine if it is possible to distribute the naan in a fair way. If it is possible, output the way you distribute the naan in a fair way.

Input

Input data will be given in the following form. All values in input are integer.

```
N L
V_{1,1} V_{1,2} \cdots V_{1,L}
\vdots
V_{N,1} V_{N,2} \cdots V_{N,L}
```

Output

If it is impossible to distribute naan in a fair way, output -1 in a line. If it is possible, output N - 1 fractions X_1, \ldots, X_{N-1} and N integers P_1, \ldots, P_N that represent a fair distribution, in the following format.


```
A_1 B_1
A_2 B_2
\vdots
A_{N-1} B_{N-1}
P_1 P_2 \cdots P_N
```

 A_i, B_i are the pair of integers that satisfies $X_i = \frac{A_i}{B_i} (1 \le i \le N)$. These integers have to follow "Constraints of Output".

Constraints of Input

- $1 \le N \le 2\,000.$
- $1 \le L \le 2\,000.$
- $1 \le V_{i,j} \le 100\,000 \ (1 \le i \le N, 1 \le j \le L).$

Constraints of Output

If it is possible to distribute the naan in a fair way, the output must satisfy the following constraints:

• $1 \le B_i \le 1\,000\,000\,000\,(1 \le i \le N).$

•
$$0 < \frac{A_1}{R} < \frac{A_2}{R} < \dots < \frac{A_{N-1}}{R} < L$$

- P_1, \ldots, P_N is a permutation of $1, \ldots, N$.
- In the distribution, the amount of happiness that *i* th person will get is more than or equal to $V_{i,1} + V_{i,2} + \cdots + V_{i,L}$
 - $\frac{N}{(1 \le i \le N).}$

 A_i and B_i are **not** necessary to be coprime.

Under the constraints of input, it can be proved that if fair distribution exists, there is a correct output that satisfies $1 \le B_i \le 1\,000\,000\,000\,(1 \le i \le N)$.

Subtask

- 1. (5 points) N = 2.
- 2. (24 points) $N \le 6$, $V_{i,j} \le 10$ ($1 \le i \le N$, $1 \le j \le L$).
- 3. (71 points) There are no additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
2 5	14 5
2 7 1 8 2	2 1
3 1 4 1 5	

In this sample, the first person will get 2 + 7 + 1 + 8 + 2 = 20 happiness when she eat whole naan and the second person will get 3 + 1 + 4 + 1 + 5 = 14 happiness when she eat whole naan. Thus, if the first person get happiness more than or equal to $\frac{20}{2} = 10$ and the second person get happiness more than or equal to $\frac{14}{2} = 7$, the distribution is fair.

If you cut the naan at point $\frac{14}{5}$, the first person will get $1 \times \frac{1}{5} + 8 + 2 = \frac{51}{5}$ happiness and the second person will get $3 + 1 + 4 \times \frac{4}{5} = \frac{36}{5}$ happiness. Hence, this is a fair distribution.

Sample Input 2	Sample Output 2
7 1	1 7
1	2 7
2	3 7
3	4 7
4	5 7
5	6 7
6	3 1 4 2 7 6 5
7	

In this sample, the naan has only one flavour. If you equally divide the naan into 7 pieces, the distribution will be fair, regardless of P_1, \ldots, P_N .

Sample Input 3	Sample Output 3
5 3	15 28
2 3 1	35 28
1 1 1	50 28
2 2 1	70 28
1 2 2	3 1 5 2 4
1 2 1	

Note that A_i and B_i are not necessary to be coprime $(1 \le i \le N)$.