The 18th Japanese Olympiad in Informatics (JOI 2018/2019)
Spring Training Camp/Qualifying Trial March 19-25, 2019 (Komaba/Yoyogi, Tokyo)

Naan

JOI Curry Shop is famous for serving very long naans. They have L kinds of flavours, numbered from 1 to L, to flavour naans. "JOI Special Naan" is the most popular menu in the shop. The length of the naan is $L \mathrm{~cm}$. We define "point x " as the point on the naan which distant $x \mathrm{~cm}$ from the left end of the naan. The segment between point $j-1$ and point j are flavoured by flavour $j(1 \leq j \leq L)$.
N people came to JOI Curry Shop. Their preferences are different from other. Specifically, when i th $(1 \leq$ $j \leq L$) person eat naan with flavour $j(1 \leq j \leq L)$, she will get $V_{i, j}$ happiness per 1 cm .

They ordered only one JOI Special Naan. They will share the naan in the following manner:

1. Choose $N-1$ fractions X_{1}, \ldots, X_{N-1}, which satisfies $0<X_{1}<X_{2}<\cdots<X_{N-1}<L$.
2. Choose N integers P_{1}, \ldots, P_{N}. This have to be a permutation of $1, \ldots, N$.
3. For each $k(1 \leq k \leq N-1)$, cut the naan at point X_{k}. Thus, naan will be separated into N pieces.
4. For each $k(1 \leq k \leq N)$, give the piece between point X_{k-1} and point X_{k}. We consider X_{0} as 0 and X_{N} as L.

We want to distribute the naan fairly. We say a distribution is fair if each person get more than or equal to one N th amount of happiness compared to the amount of happiness she will get when she eat whole JOI Special Naan.

Given the information of preferences of N people, determine if it is possible to distribute the naan in a fair way. If it is possible, output the way you distribute the naan in a fair way.

Input

Input data will be given in the following form. All values in input are integer.

$$
\begin{aligned}
& N L \\
& V_{1,1} V_{1,2} \cdots V_{1, L} \\
& \vdots \\
& V_{N, 1} V_{N, 2} \cdots V_{N, L}
\end{aligned}
$$

Output

If it is impossible to distribute naan in a fair way, output -1 in a line. If it is possible, output $N-1$ fractions X_{1}, \ldots, X_{N-1} and N integers P_{1}, \ldots, P_{N} that represent a fair distribution, in the following format.

$$
\begin{aligned}
& A_{1} B_{1} \\
& A_{2} B_{2} \\
& \vdots \\
& A_{N-1} B_{N-1} \\
& P_{1} P_{2} \cdots P_{N}
\end{aligned}
$$

A_{i}, B_{i} are the pair of integers that satisfies $X_{i}=\frac{A_{i}}{B_{i}}(1 \leq i \leq N)$. These integers have to follow "Constraints of Output".

Constraints of Input

- $1 \leq N \leq 2000$.
- $1 \leq L \leq 2000$.
- $1 \leq V_{i, j} \leq 100000(1 \leq i \leq N, 1 \leq j \leq L)$.

Constraints of Output

If it is possible to distribute the naan in a fair way, the output must satisfy the following constraints:

- $1 \leq B_{i} \leq 1000000000(1 \leq i \leq N)$.
- $0<\frac{A_{1}}{B_{1}}<\frac{A_{2}}{B_{2}}<\cdots<\frac{A_{N-1}}{B_{N-1}}<L$.
- P_{1}, \ldots, P_{N} is a permutation of $1, \ldots, N$.
- In the distribution, the amount of happiness that i th person will get is more than or equal to

$(1 \leq i \leq N)$.
A_{i} and B_{i} are not necessary to be coprime.
Under the constraints of input, it can be proved that if fair distribution exists, there is a correct output that satisfies $1 \leq B_{i} \leq 1000000000(1 \leq i \leq N)$.

Subtask

1. (5 points) $N=2$.
2. (24 points) $N \leq 6, V_{i, j} \leq 10(1 \leq i \leq N, 1 \leq j \leq L)$.
3. (71 points) There are no additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
25	145
27182	21
$\begin{array}{llllll}3 & 1 & 4 & 1\end{array}$	

In this sample, the first person will get $2+7+1+8+2=20$ happiness when she eat whole naan and the second person will get $3+1+4+1+5=14$ happiness when she eat whole naan. Thus, if the first person get happiness more than or equal to $\frac{20}{2}=10$ and the second person get happiness more than or equal to $\frac{14}{2}=7$, the distribution is fair.

If you cut the naan at point $\frac{14}{5}$, the first person will get $1 \times \frac{1}{5}+8+2=\frac{51}{5}$ happiness and the second person will get $3+1+4 \times \frac{4}{5}=\frac{36}{5}$ happiness. Hence, this is a fair distribution.

Sample Input 2	Sample Output 2
71	17
1	27
2	37
3	47
4	57
5	67
6	3142765
7	

In this sample, the naan has only one flavour. If you equally divide the naan into 7 pieces, the distribution will be fair, regardless of P_{1}, \ldots, P_{N}.

Sample Input 3	Sample Output 3						
5	3	15					
2	3	1					
1	1	1					
2	2	1					
1	2	2					
1	2	1	$	$	35	28	
:---	:---	:---					
50	28						
70	28						
3	1	5					

The 18th Japanese Olympiad in Informatics (JOI 2018/2019)
Spring Training Camp/Qualifying Trial March 19-25, 2019 (Komaba/Yoyogi, Tokyo)

Contest Day 1 - Naan

Note that A_{i} and B_{i} are not necessary to be coprime $(1 \leq i \leq N)$.

