Petar is throwing a birthday party and he decided to invite some of the employees of his company where he is the CEO.
Each employee, including Petar, has a unique label from 1 to \mathbf{N}, and an accompanying type of jokes they tell $\mathbf{V}_{\mathbf{i}}$. Also, each employee of the company except Petar has exactly one supervisor.
Since Petar is the CEO of the company, he has the label 1 and is directly or indirectly superordinate to all the employees.
At the birthday party, there are certain rules that all people present (including Petar) must follow.

- At the party, there shouldn't be two people that tell the same type of jokes.
- Person X cannot be invited if their direct supervisor is not invited.
- Person X cannot be invited if the set of jokes the invitees that person X is superior to (directly or indirectly) tell and person X don't form a set of consecutive numbers.

The numbers in the set are consecutive if the difference between adjacent elements is exactly 1 when the set is sorted ascendingly. For example, $(3,1,2)$ and $(5,1,2,4,3)$.
Petar wants to know how many different sets of jokes he can see at his party with the listed constraints.

INPUT

The first line of input contains the integer $\mathbf{N},(1 \leq \mathbf{N} \leq 10000)$.
The second line of input contains \mathbf{N} integers, the types of jokes person \mathbf{i} tells, $\mathbf{V}_{\mathrm{i}},\left(1 \leq \mathbf{V}_{\mathbf{i}} \leq 100\right)$.
Each of the following $\mathbf{N}-1$ lines contains two integers \mathbf{A} and $\mathbf{B},(1 \leq \mathbf{A}, \mathbf{B} \leq \mathbf{N})$, denoting that person \mathbf{A} is directly superior to person \mathbf{B}.

OUTPUT

The first and only line of output must contain the number of different sets of jokes that comply to the previously listed constraints.

SCORING

In test cases worth 50% of total points, it will hold that \mathbf{N} does not exceed 100 .

SAMPLE TESTS

input	input	input
4	4	6
$\begin{array}{llll}2 & 1 & 3 & 4\end{array}$	3456	$\begin{array}{llllll}5 & 3 & 6 & 4 & 2 & 1\end{array}$
12	12	12
13	13	13
34	24	14
		25
		56
output	output	output
6	3	10

Clarification of the first example: It is possible to have the following sets of jokes at the party:
$\{2\},\{2,3\},\{2,3,4\},\{1,2,3,4\},\{1,2\},\{1,2,3\}$.
Clarification of the second example: The only possible sets of jokes are: $\{3\},\{3,4\},\{3,4,5\}$. Notice that the person telling joke 6 cannot be at the party because, in that case, the set of jokes $\{4,6\}$ is not a set of consecutive numbers.

