

Problem D. Long puzzle

Time limit: 2 seconds

You have a one-dimensional puzzle. Every piece of the puzzle can be described by three values: length, type of the left border, and type of the right border. Borders can be one of three types: straight, convex, and concave. Pieces couldn't be reversed, i.e. you can't swap left and right borders of a piece. Any convex border can be connected with any concave border and vice versa. You can't connect pieces by two straight borders.

Figure 1: Example of pieces

You want to connect several (possibly one) pieces one after another in order to get a part of length l. The left and the right borders of the part should be straight. Find a number of sets of pieces, such that you can build desired part using all pieces from the set. The number could be large, so calculate it modulo $1\,000\,000\,007$. Note that you should find the number of sets of pieces, not the number of different ways of connecting them.

Input

The first line contains two integer numbers n and l — the number of pieces and desired length of a part $(1 \le n \le 300, 1 \le l \le 300)$.

The following *n* lines contain a description of the pieces. Every line contains a_i , b_i and c_i — the length of the piece, type of its left border, and type of its right border, accordingly $(1 \le a_i \le l; b_i, c_i \in \{\text{``in'', "out'', "none''}\})$. String "in' denotes concave border, "out'' — convex, "none" — straight.

Output

Output single integer — the number of sets of pieces, such that you can build desired part using these pieces, modulo $1\,000\,000\,007$.

Scoring

Subtask	Score	Constraints
1	20	$n \leq 20$
2	20	$b_i \in \{\text{``in'', ``none''}\}, c_i \in \{\text{``out'', ``none''}\}$
3	20	$n, l \leq 50$
4	20	$n, l \le 100$
5	20	No additional constraints

Examples

standard input	standard output
5 10	3
1 out out	
6 none in	
10 none none	
4 out none	
3 in none	
4 5	1
1 none out	
1 in out	
2 in out	
1 in none	

Note

Pieces of the puzzle from the first example correspond to the previous picture.

Figure 2: Sets of pieces, such that you can build desired part using them