Problem D. Long puzzle

Time limit: 2 seconds

You have a one-dimensional puzzle. Every piece of the puzzle can be described by three values: length, type of the left border, and type of the right border. Borders can be one of three types: straight, convex, and concave. Pieces couldn't be reversed, i.e. you can't swap left and right borders of a piece. Any convex border can be connected with any concave border and vice versa. You can't connect pieces by two straight borders.

Figure 1: Example of pieces
You want to connect several (possibly one) pieces one after another in order to get a part of length l. The left and the right borders of the part should be straight. Find a number of sets of pieces, such that you can build desired part using all pieces from the set. The number could be large, so calculate it modulo 1000000007 . Note that you should find the number of sets of pieces, not the number of different ways of connecting them.

Input

The first line contains two integer numbers n and l - the number of pieces and desired length of a part ($1 \leq n \leq 300,1 \leq l \leq 300$).
The following n lines contain a description of the pieces. Every line contains a_{i}, b_{i} and c_{i} - the length of the piece, type of its left border, and type of its right border, accordingly ($1 \leq a_{i} \leq l$; $b_{i}, c_{i} \in\{$ "in","out", "none" $\}$). String "in" denotes concave border, "out" - convex, "none" - straight.

Output

Output single integer - the number of sets of pieces, such that you can build desired part using these pieces, modulo 1000000007.

Scoring

Subtask	Score	Constraints
1	20	$n \leq 20$
2	20	$b_{i} \in\{$ "in", "none" $\}, c_{i} \in\{$ "out", "none" $\}$
3	20	$n, l \leq 50$
4	20	$n, l \leq 100$
5	20	No additional constraints

Examples

standard input	
5 10 standard output	
1 out out	3
6 none in	
10 none none	
4 out none	
3 in none	
4 5	
1 none out	
1 in out	
2 in out	
1 in none	1

Note

Pieces of the puzzle from the first example correspond to the previous picture.

Figure 2: Sets of pieces, such that you can build desired part using them

