You are given a histogram consisting of *N* columns of heights  $X_1, X_2, ..., X_N$ , respectively. The histogram needs to be transformed into a roof using a series of operations. A roof is a histogram that has the following properties:

- A single column is called the top of the roof. Let it be the column at position *i*.
- The height of the column at position j ( $1 \le j \le N$ ) is  $h_i = h_i |i j|$ .
- All heights *h<sub>i</sub>* are positive integers.

An operation can be increasing or decreasing the heights of a column of the histogram by 1. It is your task to determine the minimal number of operations needed in order to transform the given histogram into a roof.

## INPUT

The first line of input contains the number N ( $1 \le N \le 10^5$ ), the number of columns in the histogram.

The following line contains N numbers  $X_i$  ( $1 \le X_i \le 10^9$ ), the initial column heights.

## OUTPUT

You must output the minimal number of operations from the task.

## SCORING

In test cases worth 60% of total points, it will hold  $N \le 5000$ .

## SAMPLE TESTS

| input        | input          | input            |
|--------------|----------------|------------------|
| 4<br>1 1 2 3 | 5<br>4 5 7 2 2 | 6<br>4 5 6 5 4 3 |
| output       | output         | output           |
| 3            | 4              | 0                |

**Clarification of the first test case:** By increasing the height of the second, third, and fourth column, we created a roof where the fourth column is the top of the roof.

**Clarification of the second test case:** By decreasing the height of the third column three times, and increasing the height of the fourth column, we transformed the histogram into a roof. The example is illustrated below.

