XORanges

Janez loves oranges! So he made a scanner for oranges. With a cameras and a Raspberry Pi 3b+ computer, he started creating 3D images of oranges. His image processor is not a very good one, so the only output he gets is a 32-bit integer, which holds information about the holes on the peel. A 32bit integer D is represented as a sequence of 32 digits (bits) each of which is one or zero. If we start from 0 we can obtain D by adding 2^{i} for every i-th bit that is equal to one. More formally the number D is represented by the sequence $d_{31}, d_{30}, \ldots d_{0}$ when $D=d_{31} \cdot 2^{31}+d_{30} \cdot 2^{30}+\ldots+d_{1} \cdot 2^{1}+d_{0} \cdot 2^{0}$. For example, 13 is represented as $0, \ldots, 0,1,1,0,1$.

Janez scanned n oranges; however, sometimes he decides to rescan one of the oranges (i-th orange) during the execution of your program. This means that from this scan on, he uses the updated value for the i-th orange.

Janez wants to analyse those oranges. He finds exclusive or (XOR) operation very interesting, so he decides to make some calculations. He selects a range of oranges from l to u (where $l \leq u$) and wants to find out the value of XOR of all elements in that range, all pairs of consecutive elements in that range, all sequences of 3 consecutive elements and so on up to the sequence of $u-l+1$ consecutive elements (all elements in the range).
I.e. If $l=2$ and $u=4$ and there is an array of scanned values A, program should return the value of $a_{2} \oplus a_{3} \oplus a_{4} \oplus\left(a_{2} \oplus a_{3}\right) \oplus\left(a_{3} \oplus a_{4}\right) \oplus\left(a_{2} \oplus a_{3} \oplus a_{4}\right)$, where \oplus represents the XOR and a_{i} represents the i-th element in array A.

Let XOR operation be defined as:
If the i-th bit of the first value is the same as the i-th bit of the second value, the i-th bit of the result is 0 ; If the i-th bit of the first value is different as the i-th bit of the second value, the i-th bit of the result is 1 .

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

For example, $13 \oplus 23=26$.

13	$=0 \ldots 001101$
23	$=0 \ldots 010111$
$13 \oplus 23=26$	$=0 \ldots 011010$

Input

In the first line of the input there are 2 positive integers n and q (total number of rescans and queries - actions).

In the next line, there are n space-separated non-negative integers, which represent values of the array A (scan results for oranges). Element a_{i} contains the value for i-th orange. Index i starts with 1.

Actions are described in the next q lines with three space-separated positive integers.
If the action type is 1 (rescan), the first integer equals 1 and is followed by i (index of an orange that Janez wants to rescan) and j (the result of the rescan of the i-th orange).

If the action type is 2 (query), the first integer equals 2 and is followed by l and u.

Output

You should print exactly one integer for each query with the matching result for the query. You should print every value in a new line. Note that the i-th line of the output should match the result of the i-th query.

Constraints

- $a_{i} \leq 10^{9}$
- $0<n, q \leq 2 \cdot 10^{5}$

Subtasks

1. [12 points]: $0<n, q \leq 100$
2. [18 points]: $0<n, q \leq 500$ and there are no rescans (actions of type 1)
3. [25 points]: $0<n, q \leq 5000$
4. [20 points]: $0<n, q \leq 2 \cdot 10^{5}$ and there are no rescans (actions of type 1)
5. [25 points]: No additional constraints.

Examples

Example 1

Input

```
3
1 2 3
2 1 3
1 3
2 }
```


Output

```
2
0
```


Comment

At the begining, $A=[1,2,3]$. The first query is on the full range. The result of the analysis is $1 \oplus 2 \oplus 3 \oplus(1 \oplus 2) \oplus(2 \oplus 3) \oplus(1 \oplus 2 \oplus 3)=2$.

Then the value of the first orange is updated to 3 . This leads to a change on the same query (on a range $[1,3]) 3 \oplus 2 \oplus 3 \oplus(3 \oplus 2) \oplus(2 \oplus 3) \oplus(3 \oplus 2 \oplus 3)=0$.

Example 2

Input

```
5
1 2 3 4 5
2 1 3
1 3
2 5
244
1 1 1
244
```


Output

```
2
5
4
4
```

