Examination

N students took an examination, which consists of mathematics and informatics section. i-th student $(1 \leq$ $i \leq N)$ scored S_{i} points in mathematics, and T_{i} points in informatics. Professor T and Professor I are going to decide whether each student passes or fails, based on the scores.

- Professor T regards both subjects as important; he wants students who scored at least A points in mathematics and B points in informatics to pass.
- Professor I regards only the overall score as important; he wants students who scored at least C points in total to pass.
- Only students whom both professors want to pass can pass the examination.

You do not know these criteria: the values of A, B, C. Instead, given Q triplets of integers $\left(X_{j}, Y_{j}, Z_{j}\right)(1 \leq j \leq$ $Q)$, you want to know the number of students passing the examination when $A=X_{j}, B=Y_{j}, C=Z_{j}$.

Write a program which, given the number of students, each student's scores, and some criteria, calculates the number of students passing the examination under each criterion.

Input

Read the following data from the standard input. All the values in the input are integers.

$$
\begin{aligned}
& N Q \\
& S_{1} T_{1} \\
& \vdots \\
& S_{N} T_{N} \\
& X_{1} Y_{1} Z_{1} \\
& \vdots \\
& X_{Q} Y_{Q} Z_{Q}
\end{aligned}
$$

Output

Write Q lines to the standard output. The j-th line $(1 \leq j \leq Q)$ should contain the number of students passing the examination when $A=X_{j}, B=Y_{j}, C=Z_{j}$.

Constraints

- $1 \leq N \leq 100000$.
- $1 \leq Q \leq 100000$.
- $0 \leq S_{i} \leq 1000000000(1 \leq i \leq N)$.
- $0 \leq T_{i} \leq 1000000000(1 \leq i \leq N)$.
- $0 \leq X_{j} \leq 1000000000(1 \leq j \leq Q)$.
- $0 \leq Y_{j} \leq 1000000000(1 \leq j \leq Q)$.
- $0 \leq Z_{j} \leq 2000000000(1 \leq j \leq Q)$.

Subtasks

1. (2 points) $N \leq 3000, Q \leq 3000$.
2. (20 points) $S_{i} \leq 100000, T_{i} \leq 100000(1 \leq i \leq N), X_{j} \leq 100000, Y_{j} \leq 100000, Z_{j}=0(1 \leq j \leq Q)$.
3. (21 points) $S_{i} \leq 100000, T_{i} \leq 100000(1 \leq i \leq N), X_{j} \leq 100000, Y_{j} \leq 100000, Z_{j} \leq 200000$ $(1 \leq j \leq Q)$.
4. (57 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
54	2
35100	4
70	70
45	15
80	40
20	95
20	50
10	120
100	1
60	60
80	100
100	

- When $A=20, B=50, C=120$, only 1 st and 2 nd student can score at least 20 points in mathematics, at
least 50 points in informatics, and at least 120 points in total. Therefore, the number of students passing the examination is 2 .
- When $A=10, B=10, C=100$, only 1 st, 2 nd, 4th and 5 th student can score at least 10 points in mathematics, at least 10 points in informatics, and at least 100 points in total. Therefore, the number of students passing the examination is 4 .
- When $A=60, B=60, C=80$, only 2 nd student can score at least 60 points in mathematics, at least 60 points in informatics, and at least 80 points in total. Therefore, the number of students passing the examination is 1 .
- When $A=0, B=100, C=100$, only 1 st student can score at least 0 points in mathematics, at least 100 points in informatics, and at least 100 points in total. Therefore, the number of students passing the examination is 1 .

Sample Input 2	Sample Output 2
1010	1
4130498327	3
9192128251	5
8563559191	8
3036172671	8
2894996958	3
9904137826	3
102452726	3
1938720282	5
6036687723	6
9538849726	
523026950166009	
43754453463158	
252245888118727	
72982441263782	
241071058361508	
65025291407278	
36104567582775	
2312667608122051	
569101727262933	
3967515874117117	

