
Packing	Biscuits	(biscuits)
Aunty	Khong	 is	organising	a	competition	with	 	participants,	and	wants	 to	give	each	participant	a
bag	of	biscuits.	There	are	 	different	types	of	biscuits,	numbered	from	 	to	 .	Each	biscuit	of
type	 	()	has	a	tastiness	value	of	 .	Aunty	Khong	has	 	(possibly	zero)	biscuits	of
type	 	in	her	pantry.

Each	of	Aunty	Khong's	 bags	will	 contain	 zero	or	more	biscuits	 of	 each	 type.	The	 total	 number	of
biscuits	of	type	 	in	all	the	bags	must	not	exceed	 .	The	sum	of	tastiness	values	of	all	biscuits	in	a
bag	is	called	the	total	tastiness	of	the	bag.

Help	Aunty	Khong	find	out	how	many	different	values	of	 	exist,	such	that	 it	 is	possible	 to	pack	
bags	of	biscuits,	each	having	total	tastiness	equal	to	 .

Implementation	Details

You	should	implement	the	following	procedure:

int64	count_tastiness(int64	x,	int64[]	a)

:	the	number	of	bags	of	biscuits	to	pack.
:	an	array	of	length	 .	For	 ,	 	denotes	the	number	of	biscuits	of	type	 	in	the
pantry.
The	procedure	should	return	the	number	of	different	values	of	 ,	such	that	Aunty	can	pack	
bags	of	biscuits,	each	one	having	a	total	tastiness	of	 .
The	 procedure	 is	 called	 a	 total	 of	 	 times	 (see	 Constraints	 and	 Subtasks	 sections	 for	 the
allowed	values	of).	Each	of	these	calls	should	be	treated	as	a	separate	scenario.

Examples

Example	1

Consider	the	following	call:

count_tastiness(3,	[5,	2,	1])

This	means	that	Aunty	wants	to	pack	 	bags,	and	there	are	 	types	of	biscuits	in	the	pantry:

	biscuits	of	type	 ,	each	having	a	tastiness	value	 ,

Biscuits (1 of 3)

	biscuits	of	type	 ,	each	having	a	tastiness	value	 ,
	biscuit	of	type	 ,	having	a	tastiness	value	 .

The	possible	values	of	 	are	 .	For	instance,	in	order	to	pack	 	bags	of	total	tastiness	 ,
Aunty	can	pack:

one	bag	containing	three	biscuits	of	type	 ,	and
two	bags,	each	containing	one	biscuit	of	type	 	and	one	biscuit	of	type	 .

Since	there	are	 	possible	values	of	 ,	the	procedure	should	return	 .

Example	2

Consider	the	following	call:

count_tastiness(2,	[2,	1,	2])

This	means	that	Aunty	wants	to	pack	 	bags,	and	there	are	 	types	of	biscuits	in	the	pantry:

	biscuits	of	type	 ,	each	having	a	tastiness	value	 ,
	biscuit	of	type	 ,	having	a	tastiness	value	 ,
	biscuits	of	type	 ,	each	having	a	tastiness	value	 .

The	possible	values	of	 	are	 .	Since	there	are	 	possible	values	of	 ,	the	procedure
should	return	 .

Constraints

	(for	all)

Biscuits (2 of 3)

For	each	call	 to	count_tastiness,	 the	sum	of	 tastiness	values	of	all	biscuits	 in	 the	pantry
does	not	exceed	 .

Subtasks

1.	 (9	points)	 ,	and	for	each	call	to	count_tastiness,	the	sum	of	tastiness	values	of	all
biscuits	in	the	pantry	does	not	exceed	 .

2.	 (12	points)	 ,	
3.	 (21	points)	 ,	
4.	 (35	 points)	 The	 correct	 return	 value	 of	 each	 call	 to	 count_tastiness	 does	 not	 exceed	

.
5.	 (23	points)	No	additional	constraints.

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format.	The	first	line	contains	an	integer	 .	After
that,	 	pairs	of	lines	follow,	and	each	pair	describes	a	single	scenario	in	the	following	format:

line	 :	
line	 :	

The	output	of	the	sample	grader	is	in	the	following	format:

line	 	():	return	value	of	count_tastiness	for	the	 -th	scenario	in	the	input.

Biscuits (3 of 3)

