# 2020 Canadian Computing Olympiad Day 2, Problem 3 Shopping Plans 

## Time Limit: 2 seconds

## Problem Description

You are shopping from a store that sells a total of $N$ items. The $i$-th item has a type $a_{i}$ which is an integer between 1 and $M$. A feasible shopping plan is a subset of these items such that for all types $j$, the number of items of type $j$ is in the interval $\left[x_{j}, y_{j}\right]$.

The $i$-th item in the store has a cost of $c_{i}$, and the cost of a shopping plan is the sum of the costs of items in the plan. You are interested in the possible costs of feasible shopping plans. Find the costs of the $K$ cheapest feasible shopping plans. Note that if there are two different shopping plans with the same cost, they should be counted separately in the output.

## Input Specification

The first line consists of three space-separated integers $N, M$, and $K(1 \leq N, M, K \leq 200000)$. $N$ lines follow, the $i$-th of which contains two space-separated integers $a_{i}$ and $c_{i}\left(1 \leq a_{i} \leq M\right.$, $1 \leq c_{i} \leq 10^{9}$ ). $M$ lines follow, the $j$-th of which contains two space-separated integers $x_{j}$ and $y_{j}$ $\left(0 \leq x_{j} \leq y_{j} \leq N\right)$.

For 5 of the 25 marks available, $x_{j}=y_{j}=1$ and $N, M, K \leq 4000$.
For an additional 5 of the 25 marks available, $x_{j}=y_{j}=1$ and $N, M, c_{i} \leq 4000$.
For an additional 5 of the 25 marks available, $x_{j}=y_{j}=1$.
For an additional 5 of the 25 marks available, $x_{j}=0$.

## Output Specification

Output $K$ lines. On the $i$-th line, output the cost of the $i$-th cheapest feasible shopping plan, if one exists, or -1 if there are fewer than $i$ feasible shopping plans.

## Sample Input 1

527
15
13
23
16
21
11
11

## Output for Sample Input 1

4

## Explanation of Output for Sample Input 1

A feasible shopping plan must combine exactly one item with a cost in $\{5,3,6\}$ with exactly one item with a cost in $\{3,1\}$.

