A student called Slon is very mischievous in school. He is always bored in class and he is always making a mess. The teacher wanted to calm him down and "tame" him, so he has given him a difficult mathematical problem.

The teacher gives Slon an arithmetic expression A, the integer P and M. Slon has to answer the following question: "What is the minimal non-negative value of variable x in expression A so that the remainder of dividing A with M is equal to P ?". The solution will always exist.
Additionally, it will hold that, if we apply the laws of distribution on expression A, variable x will not multiply variable x (formally, the expression is a polynomial of the first degree in variable x).

Examples of valid expressions A : $5+x *(3+2), x+3 * x+4 *(5+3 *(2+x-2 * x))$.
Examples of invalid expressions A : $5 *(3+x *(3+x)), x *(x+x *(1+x))$.

INPUT

The first line of input contains the expression $A(1 \leqslant|A| \leqslant 100000)$.
The second line of input contains two integers $P(0 \leqslant P \leqslant M-1)$ i $M(1 \leqslant M \leqslant 1000000)$.
The arithmetic expression A will only consists of characters $+,-,^{*},(),$,x and digits from 0 to 9 .
The brackets will always be paired, the operators + , - and * will always be applied to exactly two values (there will not be an expression (-5) or ($4+-5$)) and all multiplications will be explicit (there will not be an expression 4(5) or $2(\mathrm{x})$).

OUTPUT

The first and only line of output must contain the minimal non-negative value of variable x.

SAMPLE TESTS

input	input	input
$5+3+x$	$20+3+x$	$3 *(x+(x+4) \star 5)$
910	05	17
output	output	output
1	2	1

Clarification of the first example: The remainder of dividing $5+3+x$ with 10 for $x=0$ is 8 , and the remainder of division for $x=1$ is 9 , which is the solution.

