
Lost	in	the	cycle
While	 visiting	 the	 Palace	 of	 Shirvanshahs,	 you	 get	 lost	 and	 find	 yourself	 in	 a	 fancy
cyclic	trap.	The	trap	consists	of	 	identical	rooms.	Let	us	number	all	rooms	from	 	to	

.	Each	room	has	exactly	one	open	door	that	leads	to	the	next	room,	i.e.	the	door	in
the	room	 	leads	to	the	room	 ,	for	 ,	where	the	door	in	the	room	

	leads	to	the	room	 .	After	you	use	the	door,	it	closes	behind	you,	so	you	cannot
go	back.	In	the	beginning,	you	are	in	some	room	 ,	but	you	do	not	know	that,	as	the
rooms	are	identical.	You	need	to	reach	the	room	 	and	wait	there	for	help	in	order	to
escape	the	trap.	Fortunately,	you	have	received	a	device	indicating	the	distance	to	the
room	 .	It	will	tell	you	if	you	can	reach	the	room	 	by	walking	through	no	more	than	
doors.	Before	the	device	runs	out	of	battery,	you	can	use	it	at	most	35	times.

Implementation	details

You	should	implement	the	following	procedure.	It	will	be	called	by	the	grader	once	for
each	test	case.

void	escape(int	n)

:	number	of	rooms.
You	should	be	in	the	room	 	after	this	procedure	will	be	executed.

The	above	procedure	can	make	calls	to	the	following	procedure:

bool	jump(int	x)

:	number	of	doors	you	want	to	go	through,	before	using	the	device.	The	value	of	
	must	be	between	 	and	 ,	inclusive.
This	procedure	returns	 true 	 if	after	walking	 through	 	doors	you	can	reach	 the
room	 	by	walking	 through	no	more	 than	 	doors,	and	 false 	 otherwise.	 Please
note	that	your	position	changes	before	you	use	the	device.
You	can	use	this	procedure	at	most	35	times.

Constraints

,
,

Cycle (1 of 3)

The	 grader	 is	 not	 adaptive.	 That	 means	 that	 the	 grader	 chooses	 	 before	 the
method	 escape 	is	executed,	and	does	not	change	it	during	this	execution.

Subtasks

1.	 (11	points)	 ,
2.	 (33	points)	 	for	some	 ,
3.	 (56	points)	No	additional	constraints.

Example

The	grader	makes	the	following	procedure	call:

escape(10)

There	are	 	rooms.	Suppose	that	you	start	in	the	room	 .	Let	us	consider	the
following	calls	to	the	procedure	 jump :

jump(3) :	You	are	now	in	room	 .	You	have	to	use	door	 	times,	to	reach	room	 ,
which	is	less	than	 ,	therefore	this	procedure	returns	 true .
jump(2) :	You	are	now	in	room	 	and	you	can	stay	here,	but	you	do	not	have	to.
The	procedure	will	return	 true ,	as	you	do	not	need	to	use	any	doors	to	get	to	the
room	 .
jump(3) :	 You	 are	 now	 in	 room	 .	 You	 have	 to	 use	 door	 	 times	 to	 reach	 ,
therefore	the	procedure	will	return	 false .
jump(1) :	 You	 are	 now	 in	 room	 .	 You	 have	 to	 use	 door	 	 times	 to	 reach	 ,
therefore	the	procedure	will	return	 false 	again.
jump(6) :	 You	 are	 now	 in	 room	 .	 The	 procedure	will	 return	 true ,	 as	 explained
above.

After	these	calls,	you	will	finish	in	room	 	and	this	test	will	be	accepted.

Cycle (2 of 3)

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

line	 :	

If	your	solution	finished	successfully	and	you	are	in	the	room	 	at	the	end,	the	sample
grader	prints	a	single	line	containing	the	word	 OK 	to	the	standard	output,	and	then	a
single	 line	 to	 the	 standard	 error	 stream,	 containing	 the	 number	 of	 calls	 to	 the
procedure	 jump .	Otherwise,	the	sample	grader	prints	to	the	standard	output	the	reason
why	your	solution	fails.

Cycle (3 of 3)

