
Task 3: Progression (progression)

Damian is making a video game! It consists of N missions with the ith mission initially having
a difficulty of Di. Featuring state-of-the-art game design, the game can be played both forwards
and backwards. Of course, it is also important that players feel a sense of progression — there
should be a constant increase in difficulty. As such, Damian carries out a series of operations.

There are two types of operations that he does. The first type of operation is a patch operation
defined by four integers L,R, S and C, meaning that mission i where L ≤ i ≤ R will have its
difficulty Di increased by S + (i− L)× C.

The second type of operation is a rewrite operation defined by four integers L,R, S and C,
meaning that mission i where L ≤ i ≤ R will have its difficulty Di set to S + (i− L)× C.

Damian decides that a contiguous subsequence of missions forms a playable segment if and
only if their difficulties change at a constant rate (after all, players can always play the game
backwards instead)! In other words, missions a to b where 1 ≤ a ≤ b ≤ N form a playable
segment if and only if Di+1 − Di = k for all a ≤ i < b where k is some integer (possibly
k ≤ 0). A single mission on its own forms a playable segment of length 1.

Occasionally, Damian will run an evaluate query defined by two integers L and R, meaning
that he wants to find the length of the longest playable segment between missions L and R at
that point in time.

Alas, Damian’s operations do not necessarily improve the gaming experience. As such, he
needs your help to answer the queries so that he can develop the best game possible.

Input

Your program must read from standard input.

The first line contains two integers, N and Q, representing the number of missions, and the total
number of operations and queries.

The second line contains N space-separated integers, D1, . . . , DN , defined above.

Q lines will follow, each representing either an operation or a query.

If the line begins with the integer 1, the next 4 integers are L,R, S and C, representing a patch
operation.

If the line begins with the integer 2, the next 4 integers are L,R, S and C, representing a rewrite
operation.

If the line begins with the integer 3, the next 2 integers are L and R, representing an evaluate
query.

NOI 2020 National Olympiad in Informatics—Singapore 1



Output

Your program must print to standard output.

The output should consist of a single integer on a single line for each evaluate query, the length
of the longest playable segment between missions L and R at that point in time.

Implementation Note

As the input lengths for subtasks 1, 3, 4, 5 and 6 may be very large, you are recommended to
use C++ with fast input routines to solve this problem. The scientific committee does not have
a solution written in Python that can fully solve this problem.

C++ and Java source files containing fast input/output templates have been provided in the
attachment. You are strongly recommended to use these templates.

If you are implementing your solution in Java, please name your file Progression.java
and place your main function inside class Progression.

Subtasks

The maximum execution time on each instance is 3.0s, and the maximum memory usage on
each instance is 1GiB. For all testcases, the input will satisfy the following bounds:

• 1 ≤ N,Q ≤ 3× 105

• −106 ≤ Di, S, C ≤ 106

• 1 ≤ L ≤ R ≤ N

Under the given bounds, Di is guaranteed to fit in a 64-bit signed integer at all times.

Your program will be tested on input instances that satisfy the following restrictions:

Subtask Marks Additional Constraints
1 9 L = 1, R = N for all operations and queries.
2 15 1 ≤ N,Q ≤ 103

3 35 There are no patch and rewrite operations.
4 11 L = R for all operations.
5 13 There are no rewrite operations.
6 17 -

NOI 2020 National Olympiad in Informatics—Singapore 2



Sample Testcase 1

This testcase is valid for subtasks 2 and 6 only.

Input Output
10 6
1 2 3 4 1 2 3 4 5 5
3 1 10
1 1 4 -1 -1
3 1 10
3 9 10
2 5 10 -2 -2
3 1 10

5
6
2
7

Sample Testcase 1 Explanation

For the first evaluate query, missions 5 to 9 form the longest playable segment (with k = 1).

After the patch operation, the difficulties become [0, 0, 0, 0, 1, 2, 3, 4, 5, 5].

For the second evaluate query, missions 4 to 9 form the longest playable segment (with k = 1).

For the third evaluate query, missions 9 to 10 form the longest playable segment (with k = 0),
as we only consider missions between missions L = 9 and R = 10.

After the rewrite operation, the difficulties become [0, 0, 0, 0,−2,−4,−6,−8,−10,−12].

For the final evaluate query, missions 4 to 10 form the longest playable segment (with k = −2).

Sample Testcase 2

This testcase is valid for subtasks 1, 2 and 6 only.

Input Output
10 5
1 2 3 4 1 2 3 4 5 5
3 1 10
1 1 10 1 2
3 1 10
2 1 10 3 4
3 1 10

5
5
10

NOI 2020 National Olympiad in Informatics—Singapore 3



Sample Testcase 3

This testcase is valid for subtasks 2, 3, 4, 5 and 6 only.

Input Output
10 5
1 2 3 4 1 2 3 4 5 5
3 1 4
3 4 5
3 2 4
3 5 9
3 10 10

4
2
3
5
1

Sample Testcase 4

This testcase is valid for subtasks 2, 4 and 6 only.

Input Output
10 5
1 2 3 4 1 2 3 4 5 5
2 10 10 6 1
3 5 10
1 5 5 4 1
3 1 5
3 1 6

6
5
5

Sample Testcase 4 Explanation

Note that C is not necessarily 0 when L = R. However, its value is irrelevant to the operation.

Sample Testcase 5

This testcase is valid for subtasks 2, 5 and 6 only.

Input Output
10 5
1 2 3 4 1 2 3 4 5 5
1 1 4 -1 -1
3 1 5
3 4 5
1 5 10 -1 -1
3 1 10

4
2
9

NOI 2020 National Olympiad in Informatics—Singapore 4


