The teacher has sent an e-mail to her students with the following task:
"Write a programme that will determine and output the value of X if given the statement:

$$
X=\text { number }_{1}^{\text {pot }_{1}}+\text { number }_{2}^{\text {pot }_{2}}+\ldots+\text { number }_{N}^{\text {pot }_{N}}
$$

and it holds that number ${ }_{1}$, number 2 to number $_{N}$ are integers, and pot $_{1}$, pot ${ }_{2}$ to pot $_{N}$ one-digit integers." Unfortunately, when the teacher downloaded the task to her computer, the text formatting was lost so the task transformed into a sum of N integers:

$$
X=P_{1}+P_{2}+\ldots+P_{N}
$$

For example, without text formatting, the original task in the form of $X=21^{2}+125^{3}$ became a task in the form of $X=212+1253$. Help the teacher by writing a programme that will, for given N integers from P_{1} to P_{N} determine and output the value of X from the original task.
Please note: We know that it holds $a^{N}=a \cdot a \cdot \ldots \cdot a$ (N times).

INPUT

The first line of input contains the integer $N(1 \leqslant N \leqslant 10)$, the number of the addends from the task. Each of the following N lines contains the integer $P_{i}\left(10 \leqslant P_{i} \leqslant 9999, i=1 \ldots N\right)$ from the task.

OUTPUT

The first and only line of output must contain the value of $X(X \leqslant 1000000000)$ from the original task.

SAMPLE TESTS

input	input	input
2	5	3
212	23	213
1253	17	102
	43	45
	52	
output	22	output
1953566	output	10385

Clarification of the first example: $21^{2}+125^{3}=441+1953125=1953566$.

