Separator (separator)

```
Day
    practice session
Language
    English
Time limit:
Memory limit:
1.2 seconds
1,048,576 kB
```

Let $A=\left(a_{1}, a_{2}, \ldots\right)$ be a sequence of distinct integers. An index j is called a separator if the following two conditions hold:

- for all $k<j: a_{k}<a_{j}$,
- for all $k>j: a_{k}>a_{j}$.

In other words, the array A consists of three parts: all elements smaller then a_{j}, then a_{j} itself, and finally all elements greater than a_{j}.
For instance, let $A=(30,10,20,50,80,60,90)$. The separators are the indices 4 and 7 , corresponding to the values 50 and 90 .

The sequence A is initially empty. You are given a sequence a_{1}, \ldots, a_{n} of elements to append to A, one after another. After appending each a_{i}, output the current number s_{i} of separators in the sequence you have.
The input format is selected so that you have to compute the answers online. Instead of the elements a_{i} you should append to A, you are given a sequence b_{i}.
Process the input as follows:
The empty sequence A contains $s_{0}=0$ separators.
For each i from 1 to n, inclusive:

1. Calculate the value $a_{i}=\left(b_{i}+s_{i-1}\right) \bmod 10^{9}$.
2. Append a_{i} to the sequence A.
3. Calculate s_{i} : the number of separators in the current sequence A.
4. Output a line containing the value s_{i}.

Input

The first line contains a single integer $n\left(1 \leq n \leq 10^{6}\right)$: the number of queries to process.
Then, n lines follow. The i-th of these lines contains the integer $b_{i}\left(0 \leq b_{i} \leq 10^{9}-1\right)$. The values b_{i} are chosen in such a way that the values a_{i} you'll compute will all be distinct.

Output

As described above, output n lines with the values s_{1} through s_{n}.

Scoring

Subtask 1 (20 points): $n \leq 100$.
Subtask 2 (30 points): $n \leq 1000$.
Subtask 3 (40 points): $n \leq 100,000$.
Subtask 4 (10 points): no additional constraints.

Examples

standard input	standard output
7	1
30	0
9	0
20	1
79	2
58	1
89	2
10	
0	1
0	2
0	3
0	4
0	5
0	6
0	7
0	8
0	9

Note

The first example equals is described in the problem statement.
The second example is decoded as $A=(0,1,2,3,4,5,6,7,8,9)$.

