Lithuanian Olympiad in Informatics
Final Round • Nemenčiné, 2019 March 30th-31st • Senior Division triusis-vyr

Rabbit Carrot

Rabbit called Carrot is willing to cross the bridge. The bridge consists of N poles of different height. Carrot can jump at most M centimeters up and any distance down.

The rabbit starts crossing the bridge from the left and is standing at height zero immediately before the first pole. The goal of the Carrot is to reach the other side of the bridge by jumping on each pole in order.

However, it might happen, that the rabbit will not be able to jump on some poles as it will be too high.

Task. Help the rabbit Carrot to cross the bridge by modifying the heights of some poles. Calculate the smallest possible amount of poles the height of which has to be either increased or decreased so that the Carrot could cross the bridge. Height of each of the poles can be increased by any amount and decreased to a non-negative value.

Input. The first line contains two integers: the number of bridge poles N and the Carrot leap-up size M. The following N lines contain the heights of the poles a_{i} given as integers one number per line.

Output. Output one integer - the least number of poles that have to be either lifted or lowered so that the rabbit Carrot could cross the bridge.

Examples.

Input	Output	Comment
5400	1	There are several options: 1) lift the third pole from $200 \mathrm{~cm} \mathrm{to} 1000 \mathrm{~cm}, 2)$ lower the
300		fourth pole from 1000 cm to 500 cm.
700		
200		
1000		

Lithuanian Olympiad in Informatics

Final Round • Nemenčinė, 2019 March 30th-31st • Senior Division triusis-vyr

Input	Output	Comment
3300	3	The height of all three poles should be 700 1000
1300		the brifidge. for Carrot to be able to cross

Subtasks. \quad Constraints for all tests: $1 \leq N \leq 200000, \quad 0 \leq M \leq 5000, \quad 0 \leq a_{i} \leq 10^{9}$.

Nr.	Points	Additional constraints
1	14	$N \leq 10, \quad a_{i} \leq 10$
2	21	$N \leq 5000, \quad a_{i} \leq 5000$
3	28	$N \leq 5000$
4	37	No additional constraints

