The 18th Japanese Olympiad in Informatics (JOI 2018/2019)
Spring Training Camp/Qualifying Trial
March 19-25, 2019 (Komaba/Yoyogi, Tokyo)
Contest Day 2 - Two Antennas

Two Antennas

There are N antennas, numbered from 1 to N along a line. Each antenna is one kilometer distant from consecutive antennas. The height of the antenna $i(1 \leq i \leq N)$ is H_{i}. The antenna i can send information to the antennas located between A_{i} kilometers and B_{i} kilometers, inclusive, from the antenna i. If and only if the antenna x and the antenna $y(1 \leq x<y \leq N)$ can send information to each other, the pair of antennas is in communication, and the communication cost is equal to $\left|H_{x}-H_{y}\right|$.

Mr. K, the Prime Minister of JOI Republic, has received Q complaints about bad connection from the citizens. A study showed that, for the j-th complaint $(1 \leq j \leq Q)$, something among the antennas $L_{j}, L_{j}+1, \ldots, R_{j}$ has troubles. You are assigned to find whether there exists a pair of antennas in communication among the antennas $L_{j}, L_{j}+1, \ldots, R_{j}$, and if there does, you also have to find the maximum communication cost among such pairs.

Write a program which, given the information of antennas and complaints, determines whether there exists a pair of antennas in communication among the antennas $L_{j}, L_{j}+1, \ldots, R_{j}$ and calculates the maximum communication cost among such pairs if there exists such a pair.

Input

Read the following data from the standard input. All the values in the input are integers.

$$
\begin{aligned}
& N \\
& H_{1} A_{1} B_{1} \\
& \vdots \\
& H_{N} A_{N} B_{N} \\
& Q \\
& L_{1} R_{1} \\
& \vdots \\
& L_{Q} R_{Q}
\end{aligned}
$$

Output

Write Q lines to the standard output. The j-th line $(1 \leq j \leq Q)$ should be -1 if there is no pair of antennas in communication among the antennas $L_{j}, L_{j}+1, \ldots, R_{j}$, or the maximum communication cost among such pairs otherwise.

Constraints

- $2 \leq N \leq 200000$.
- $1 \leq H_{i} \leq 1000000000(1 \leq i \leq N)$.
- $1 \leq A_{i} \leq B_{i} \leq N-1(1 \leq i \leq N)$.
- $1 \leq Q \leq 200000$.
- $1 \leq L_{j}<R_{j} \leq N(1 \leq j \leq Q)$.

Subtasks

1. (2 points) $N \leq 300, Q \leq 300$.
2. (11 points) $N \leq 2000$.
3. (22 points) $Q=1, L_{1}=1, R_{1}=N$.
4. (65 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1		
5		-1	
10	2	4	1
1	1	1	
2	1	3	8
1	1	1	8
100	1	1	
5		99	
1	2		
2	3		
1	3		
1	4		
1	5		

The antenna 1 and the antenna 2 are not in communication, so the answer to the 1 st complaint is -1 .
The pair of antennas in communication which has the maximum communication cost for the 2nd, 3rd, 4th and 5 th complaint is $(2,3),(1,3),(1,3)$, and $(4,5)$, respectively.

The 18th Japanese Olympiad in Informatics (JOI 2018/2019)
Spring Training Camp/Qualifying Trial March 19-25, 2019 (Komaba/Yoyogi, Tokyo)

Sample Input 2	Sample Output 2
20	806460109
260055884215	
7376897515	
575359903115	
3419074151414	
162026576919	
551267451019	
$\begin{array}{lll} 95712405 & 11 & 14 \end{array}$	
416027186813	
$370819848 \quad 1114$	
629309664413	
822713895515	
3907169051317	
577166133819	
1959311951017	
3770304631417	
9684866851119	
963040581410	
56683555712	
586336111616	
38586583189	
1	
120	

This sample input satisfies the constraints for Subtask 3.

