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▶    GREETINGS from the GENERAL CHAIR

Welcome to the 19th World conference on Information Security and Application (WISA 2018). Since its 

first workshop in 2000, WISA now has become one of the leading international conferences where researchers 

and engineers in security areas have the opportunity to meet and discuss new ideas and technologies about 

information security and applications. 

Thanks to many participants around the world, WISA can have another successful venue in 2018. As a 

general chair of WISA 2018, I would like to thank all the participants. Especially, three research institutes of 

Korea including KISA (Korea Internet and Security Agency), ETRI (Electronics and Telecommunications Research 

Institute) and NSR (National Security Research Institute) deserve my sincere appreciation for their invaluable 

contributions to WISA. 

WISA 2018 will serve as an open forum for exchanging and sharing of common research interests and 

results of research, development and applications on information security areas. The program chair, Brent 

Byunghoon Kang, KAIST prepared valuable programs along with program committee members, many of who 

have served in top security conferences such as IEEE S&P, ACM CCS, Usenix Security, and NDSS. 

We are specially honored by the two keynote talks by Professor Dongyan Xu, Purdue University, on “A 

Cyber-Physical Approach to Robotic Vehicle Security”, and Professor Ahmad-Reza Sadeghi, TU Darmstadt, on 

“The Games of Drones: On Building Trust in Autonomous Collaborative Systems” Also, we are delighted to 

have a special invited talk from Professor Mark M. Tehranipoor, on “Security along SoC Design Lifecycle: Current 

Practices and Challenges Ahead”.

The conference has received 53 submissions, covering all areas of information security, and finally selected 

outstanding 11 full papers and additional 11 short papers out of 44 papers that were carefully reviewed by the 

program committee. Especially this year, WISA will host the presentations from the awarded papers from KIISC-

KAIS Cyber Security Research Paper Competition sponsored by NIS. The selection committee has received total 

84 papers and awarded 24 papers: grand prize (1), first prize (4), second prize (9), and third prize (10). 

Jeju Island holding WISA 2018 is a wonderful place offering a unique tourist experience as well as the 

greatest workshop itself. I hope all the participants have a delightful experience in the beautiful island of Jeju 

and share valuable research results in information security applications. Finally, I would like to express my sincere 

gratitude to each of WISA organizing and program committee members as well as paper contributors. Without 

their dedication and professionalism, WISA 2018 could not have been held.

August , 2018 

Prof. Manpyo Hong

General Chair of WISA 2018
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  CONFERENCE COMMITTEE    ◀

▶    General Chair
Manpyo Hong Ajou University, Korea 

▶    Organizing Committee Chair
OkYeon Yi Kookmin University, KOREA

▶    Program Committee Chair
Brent ByungHoon Kang KAIST, Korea

▶    PROGRAM COMMITTEE
Jason Hong Carnegie Mellon University

Lujo Bauer Carnegie Mellon University

Seong-je Cho Dankook University

Dooho Choi ETRI

Sangho Lee Georgia Institute of Technology

Eul Gyu Im Hanyang University

David Hyunchul Shim KAIST (Aerospace Engineering)

Han-Lim Choi KAIST (Aerospace Engineering)

Jinwhan Kim KAIST (Mechanical Engineering)

Sang Kil Cha KAIST

Seungwon Shin KAIST

Marcus Peinado Microsoft Research

Hyung Chan Kim NSR

Min Suk Kang National University of Singapore

Junghwan Rhee NEC Laboratories America

Long Lu Northeastern University

Yeongjin Jang Oregon State University

Gang Tan Penn State

Jong Kim POSTECH

Byoungyoung Lee Purdue University
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▶    CONFERENCE COMMITTEE

Howon Kim Pusan National University

Ulrich Rührmair Ruhr University Bochum

Ji Sun Shin Sejong University

Hyoungshick Kim Sungkyunkwan University

Yinqian Zhang The Ohio State University

Michael Franz University of California, Irvine

Aziz Mohaisen University of Central Florida 

Kyu Hyung Lee University of Georgia

Ilsun You Soonchunhyang University

▶    ORGANIZING COMMITTEE CHAIR
Okyeon Yi Kookmin University, Korea

 

▶    ORGANIZING COMMITTEE
Changhoon Lee Seoul National University of Science and Technology

Duk Ryeouk Moon KOEN

Hangbae Chang Chung-Ang University 

Howon Kim Pusan National University

Hun Yeong Kwon Korea University

HwaJeong Seo Hansung University 

Hyoungshick Kim Sungkyunkwan University

Hyung Geun Oh NSR

lckhyun Shin KINAC

lkkyun Kim ETRI

Im-Yeong Lee Soonchunhyang University 

Jeong Hyun Yi Soongsil University 

Jin Kwak Ajou University 

Jincheol Kim KEPCO KDN

Jin Young Oh KISA

Jonghee M. Youn Yeungnam University 
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  CONFERENCE COMMITTEE    ◀

Jong-Hyouk Lee Sangmyung University 

Jongsung Kim Kookmin University 

Joong-Chan Na ETRI 

JungTaek Seo Soonchunhyang University

Junbeom Hur Korea University 

Kyung Hyune Rhee Pukyong National University 

Kyung-Ho Lee Korea University 

Kyungho Son KISA 

Louis Hur NSHC 

Mun-Kyu Lee Inha University 

Namhi Kang Duksung Women's University 

Namje Park Jeju National University 

Sang-Soo Yeo Mokwon University 

Sangwoo Cho NSR 

Seokhie Hong Korea University 

Seung-Hyun Seo Hanyang University

Seungjoo Kim Korea University 

Si Hwan Hong Funancial Security Institute 

Souhwan Jung Soongsil University 

Sung Cheol Kim KEPCO KDN 

Sung-Jae Lee KISA 

Taekyoung Kwon Yonsei University 

Tai Hyo Kim Formal Works Inc. 

Yoojae Won Chungnam National University

Young Kyun Cha Korea University

Youngchul Choi SGA Solutions Co. LTD.

Young-Ho Park Sejeong Cyber University
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▶    CONFERENCE PROGRAM

Place: Crystal Ballroom Ⅰ,Ⅱ,Ⅲ (4F), Lotte City Hotels Jeju

DAY 1    August 23(Thursday), 2018
Room

Time CrystalⅠ Crystal Ⅱ Crystal Ⅲ 

09:00 ~ Registration

09:50 ~ 10:00 Welcome Remark The final assessment 
committee for 

security project (IITP)10:00 ~ 12:00 Short Paper Session Track 1 (5 papers)
Session Chair: Hyung Chan Kim (NSR)

Short Paper Session Track 2 (5 papers)
Session Chair: Jinsoo Jang  (KAIST)

12:00 ~ 13:00 Lunch - Crystal Ballroom 1, Foyer (4F)

13:00 ~ 15:00 Invited Talk #1 (Mark Tehranipoor) & Keynote #1 (Dongyan Xu)
Session Chair: Yunheung Paik (Seoul National University)

The final assessment 
committee for 

security project (IITP) 

15:00 ~ 15:20 Coffee Break

15:20 ~ 16:00 Invited Talk #2 (John Choi) 
Session Chair: Hyoungshick Kim (Sungkyunkwan University)

16:00 ~ 18:00 Session 1: System Security (4 papers)
Session Chair: Jeong Hyun Yi (Soongsil University)

19:30 ~ 21:00 Poster Presentation & Career Night Session
Session Chair: Byoungyoung Lee (Purdue University)

DAY 2    August 24(Friday), 2018
Room

Time CrystalⅠ Crystal Ⅱ Crystal Ⅲ 

09:20 ~ 10:50 Session 2: Analysis and Visualization of Threat (3 papers)
Session Chair: Hwajeong Seo (Hansung University)

The final assessment 
committee for 

security project (IITP) 
10:50 ~ 11:00 Coffee Break

11:00 ~ 12:00 Keynote #2 (Ahmad Sadeghi)
Session Chair: Junbeom Hur (Korea University)

12:00 ~ 13:00 Lunch - Crystal Ballroom 1, Foyer (4F)

13:00 ~ 14:30 KIISC paper competition paper 
presentation

Session Chair: Taekyoung Kwon (Yonsei 
University) and HyoungShick Kim 

(Sungkyunkwan University)

Free Tour Program
The final assessment 

committee for 
security project (IITP) 

14:30 ~ 15:00

15:00 ~ 16:30

16:30 ~ 18:00 Break for Banquet

18:00 ~ 20:30 Banquet - Crystal Ballroom (4F)

DAY 3    August 25(Saturday), 2018
Room

Time CrystalⅠ Crystal Ⅱ

09:30 ~ 10:30 Session 3: Applied Crypto (4 long papers / 1 short paper) 
Session Chair: DaeHun Nyang (Inha University)

10:30 ~ 10:40 Coffee Break

10:40 ~ 12:00 Session 3 Continued.

12:00 ~ 12:10 Closing Remark

12:10 ~ 13:00 Lunch - Crystal Ballroom 1, Foyer (4F)
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  REGISTRATION    ◀

▶    GENERAL REGISTRATION INSTRUCTION
Offline Registration   Please fill out the REGISTRATION form below and send it to us via fax +82-2-
564-9226. Payment can be made with credit cards (Visa or Master Card only) or wire transfer payable 
in US dollars ($) to WISA 2018 (Koreans can pay in Korean currency (W))

Online (E-mail) Registration   Please fill out the REGISTRATION form below and send it to kiisc@
kiisc.or.kr. Payment can be made with credit cards (Visa or Master Card only) or wire transfer payable 
in US dollars ($) to WISA 2018 (Koreans can pay in Korean currency (W)).

▶    INTERNATIONAL PARTICIPANTS PAYMENT METHOD
Early Registration Due   2018/08/17 (Fri.)

Credit Card   Please fill out the REGISTRATION form

Wire Transfer   beneficiary' name : KIISC
beneficiary's account number : 754-01-0008-146
beneficiary's bank : Kookmin Bank
the branch name : Yeoksamyeok Branch
SWIFT code : CZNBKRSE
beneficiary' address :  Seongji Heights 3-Cha Bldg., Room 909, 507, Nonhyeon-ro, 

Gangnam-gu, Seoul 06132, Korea

▶   KOREAN PARTICIPANTS  사전등록 : 2018년 8월 17일(금) 18:00까지

▷ 학회 홈페이지( www.kiisc.or.kr )접속 → 4.학술행사 → 학회행사 → 사전등록바로가기 클릭

* 사전등록 송금처
▷ 예금주 : 한국정보보호학회
▷ 계좌번호 : (국민은행) 754-01-0008-146

* 사전등록 시 등록비는 위의 구좌로 송금하시고, 입금자가 대리일 경우 통보바랍니다.

* 반드시 영문 성함/소속으로 등록 바랍니다.

* 중식 2회, 만찬, 온라인 프로시딩, 리플릿 제공 

▶    REGISTRATION FEE
Early Registration (until Aug. 17) On-site Registration (from Aug. 22)

General Participants
(full-time students)

$ 650 (\ 700,000)
$ 450 (\ 500,000)

$ 750 (\ 800,000)
$ 550 (\ 600,000)

LNCS  Proceedings    $100 (\110,000) per copy   $100 (\110,000) per copy 
All registration include online proceedings, refreshments during the conference and banquet.
※All registrations do not include LNCS proceedings and accommodation.

▶   REGISTRAR CONTACT INFORMATION
Korea Institute of Information Security & Cryptology
Seongji Heights 3-Cha Bldg., Room 909, 507, Nonhyeon-ro, Gangnam-gu, Seoul 06132, Korea

Tel  +82-2-564-9333(ext.1)   /   Fax  +82-2-564-9226   /   E-mail  kiisc@kiisc.or.kr
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▶    ACCEPTED PAPERS

   Keynote #1                                                                                                                                                                                                        

 TITLE  "A Window to the Past": Uncovering Temporal-Spatial Forensics Information from a Memory Snapshot

 AUTHORS  Dongyan Xu is a professor in the Department of Computer Science and Interim Director of the Center for 
Education and Research in Information Assurance and Security (CERIAS) at Purdue University. He received his Ph.D. in 
computer science from the University of Illinois at Urbana-Champaign in 2001. Dongyan's current research interests include 
computer systems security, cyber-physical security, and cyber forensics. His research has long been sponsored by both 
government and industry and he has been the PI of research projects totaling more than US$17.5M. Dongyan is the co-
recipient of Best Paper or Best Student Paper Awards from five top security conferences (RAID'08, USENIX Security'14, 
CCS'15, NDSS'16, and USENIX Security'17). He served as a Program Co-Chair of ACM CCS'17 and is serving as a Program 
Co-Chair of NDSS'19 and NDSS'20.

 ABSTRACT  Traditional digital forensics techniques focus on analyzing persistent disk images for recovering evidence data 
and information. In this talk, I will present our research efforts at a new frontier: uncovering past user activities from a single 
snapshot of the volatile memory (i.e. a "window to the past"). More specifically, using Android as our subject platform, I 
will first show the reconstruction and re-rendering of the most recent GUIs of apps running in the background, by piecing 
together hundreds and thousands of disconnected data structures that previously represented a GUI screen. Then I will 
demonstrate the (more powerful) capability of recreating a sequence of previously displayed GUI screens of any app, via 
program instrumentation and trans-context execution. Finally, I will present our latest effort in device-wide sequencing of 
user activities across apps, by exploiting the temporal-spatial correlation in memory allocation. All techniques presented 
are app-agnostic, requiring no app-specific reverse engineering or modification.

  Keynote #2                                                                                                                                                                                                        

 TITLE   The Games of Drones: On Building Trust in Autonomous Collaborative Systems

 AUTHORS  Ahmad-Reza Sadeghi <ahmad.sadeghi@trust.tu-darmstadt.de>
Ahmad-Reza Sadeghi is a full professor of Computer Science at the TU Darmstadt, Germany. He is the head of the Systems 
Security Lab at the Cybersecurity Research Center of TU Darmstadt. Since January 2012 he is also the director of the Intel 
Collaborative Research Institute for Secure Computing and Collaborative Autonomous Systems at TU Darmstadt. He 
holds a Ph.D. in Computer Science from the University of Saarland, Germany. Prior to academia, he worked in R&D of 
Telecommunications enterprises, amongst others Ericsson Telecommunications. He has been continuously contributing to 
security and privacy research. For his influential research on Trusted and Trustworthy Computing he received the renowned 
German “Karl Heinz Beckurts” award. This award honors excellent scientific achievements with high impact on industrial 
innovations in Germany. He was Editor-In-Chief of IEEE Security and Privacy Magazine, served 5 years on the editorial board 
of the ACM Transactions on Information and System Security (TISSEC), and is currently on editorial boards of ACM Books, 
ACM TODAES, ACM TIOT and ACM  DTRAP.
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 ABSTRACT  Emerging technologies and applications such as IoT and autonomous systems are increasingly demanding 
for higher connectivity as well as autonomous and collaborative functionalities. This, however, poses many security and 
privacy challenges on the design of the underlying (embedded) computing platforms. In particular the sound behavior and 
integrity of software is vital for reliable and safe operations of devices.
Remote attestation has emerged to a powerful security service that enables a remote entity (verifier) to verify the integrity 
of the software running on an untrusted device (prover). However, conventional remote attestation solutions suffer from a 
variety of shortcomings: they are static by nature and vulnerable to run-time attacks (e.g., return-oriented programming); 
they typically allow for attesting individual devices and hence not scalable; they assume a central verifier which is unavailable 
in collaborative autonomous systems; and they consider software-only adversary model.
Recent research has addressed these issues to some extent by proposing solutions such as control-flow attestation (CFA) 
to capture the dynamic behavior of code; swarm attestation to scale to a large number of devices; hardware-assisted 
attestation to significantly improve performance; and extending the threat model to certain class of hardware attacks.    
In this talk we provide a brief overview of the recent research on attestation schemes and architectures. In particular, we 
present our approach towards securing collaborative autonomous systems by novel attestation schemes where we use 
autonomous drones (aka quad-copters) to demonstrate our concepts and ideas. Finally, we discuss research challenges 
and new directions. 

   Invited Talk #1                                                                                                                                                                                                        

 TITLE  Security along SoC Design Lifecycle:  Current Practices and Challenges Ahead

 AUTHORS  Mark M. Tehranipoor 
Intel Charles E. Young Preeminence Endowed Chair Professor in Cybersecurity
Florida Institute for Cybersecurity Research, University of Florida
http://tehranipoor.ece.ufl.edu/ , tehranipoor@ufl.edu 

Mark Tehranipoor is currently the Intel Charles E. Young Preeminence Endowed Chair Professor in Cybersecurity at the ECE 
Department, University of Florida. He is also currently serving as the Associate Chair for Research and Strategic Initiatives 
at the ECE Department, and as Director for Florida Institute for Cybersecurity Research (FICS). His current research interests 
include: IoT security, hardware security and trust, supply chain risk management and security, counterfeit electronics 
detection and prevention and reliable circuit design. Dr. Tehranipoor has published over 400 journal articles and refereed 
conference papers and has given more than 175 invited talks and keynote addresses since 2006. He has three patents 
granted, 15 pending, and has published 10 books and 20 book chapters. He is a recipient of 13 best paper awards and 
nominations, as well as the 2008 IEEE Computer Society (CS) Meritorious Service Award, the 2012 IEEE CS Outstanding 
Contribution, the 2009 NSF CAREER Award, and the 2014 MURI award. His projects are sponsored by both the industry 
(Semiconductor Research Corporation (SRC), Texas Instruments, Freescale, Comcast, Honeywell, LSI, Avago, Mentor 
Graphics, R3Logic, Cisco, Qualcomm, Raytheon, MediaTeck, etc.) and Government (NSF, ARO, MDA, DOD, AFOSR, DOE, 
Draper, etc.).
He serves on the program committee of more than a dozen leading conferences and workshops. He served as Program and 
General Chairs of several leading conferences and workshops. He co-founded a new symposium called IEEE International 
Symposium on Hardware-Oriented Security and Trust (HOST) and served as HOST-2008 and HOST-2009 General Chair 
(http://www.hostsymposium.org/). He is currently serving as HOST’s Chair of Steering Committee. He is also the co-founder 
of Trust-Hub (www.trust-hub.org) and Asian HOST (http://asianhost.org/2017/). He serves as co-EIC for newly established 
Journal on Hardware and Systems Security (HaSS). He also served as an Associate EIC for IEEE Design & Test, an IEEE 
Distinguished Speaker, and an ACM Distinguished Speaker from 2010 to 2014. He is currently serving as an Associate Editor 
for JETTA, JOLPE, Transactions on VLSI (TVLSI), and Transactions on Design Automation for Electronic Systems (TODAES). 
Prior to joining University of Florida, Dr. Tehranipoor served as the founding director of the Center for Hardware Assurance, 
Security, and Engineering (CHASE) and the Comcast Center of Excellence in Security Innovation (CSI) at the University of 
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Connecticut.  Dr. Tehranipoor is a Fellow of IEEE, a Golden Core Member of the IEEE, and Member of ACM and ACM SIGDA. 
He is currently serving as IEEE Ambassador on Cybersecurity. 

 ABSTRACT  System-on-chip (SoC) security has received significant attention in the past several years due mainly to its 
prevalence in internet of things (IoT) devices, cyber physical systems, and embedded computing systems. Security of SOCs 
has become even a greater concern due to the globalized design, fabrication, and assembly processes. The complexity 
of today’s electronic components and systems supply chain has made SoCs increasingly vulnerable to intentional and 
unintentional attacks (malicious activities, information leakage, side channel signal leakage, confidentiality attacks and 
integrity violations). In this talk, we will first analyze these vulnerabilities and threats. We will then present challenges 
dealing with emerging attacks and threats in SoCs and present potential solutions and set of security rules to addressing 
them. 

   Invited Talk #2                                                                                                                                                                                                        

 TITLE  Consensus Issues in Developing a Blockchain based Massive Content Distribution System

 AUTHORS  Jong (John) Choi, Changwon Kim, and Dongwhan Shin (MarkAny) 

 ABSTRACT  Consensus is an important and essential component in implementing blockchain system, public chain or 
private chain. In BitCoin network and Etheruem network, consensus can be achieved through unanimous agreement by 
all the participants in the network. However, in contrast to the public chain, correctness of the proposed block in business 
blockchains are agreed and approved by through ordering and verification of participating nodes. 
In developing a blockchained massive content distribution system, the issue of consensus should be discussed with 
comparisons of various algorithms. In this presentation, a new bilateral agreement is proposed as a consensus agreement 
between contents seller and consumer, inviting more proposals and discussions.     
 

   Short Session (Short Papers) :  (Day1 10:00 ~ 12:00)  Track1: ( Day1 10:00 ~ 12:00,  Room : Crystal I )                                                       

 TITLE  Security Analysis of Mobile Web Browser Hardware Accessibility: Study with Ambient Light Sensors

 AUTHORS    1. Sanghak Lee <uzbu89@postech.ac.kr> (POSTECH) / 2. Sangwoo Ji <sangwooji@postech.ac.kr> (POSTECH) 
/ 3. Jong Kim <jkim@postech.ac.kr> (POSTECH)

 ABSTRACT  Mobile web browsers are evolved to support the functionalities presented by HTML5. With the hardware 
accessibility of HTML5, it is now possible to access sensor hardwares of a mobile device through a web page regardless 
of the need for a mobile application. In this paper, we analyze the security impact of accessing sensor hardwares of a 
mobile device from mobile web page. First, we present the test results of hardware accessibility from mobile web browsers.  
Second, to raise awareness of the seriousness of hardware accessibility, we introduce a new POC attack LightTracker which 
infers the victim's location using light sensor. We also show the effectiveness of the attack in real world.

 TITLE  HapticPoints : The Extended PassPoints Graphical Password

 AUTHORS  1. Trust Ratchasan <trustrat@gmail.com> (KMITL) / 2. Rungrat Wiangsripanawan (KMITL)
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 ABSTRACT  The most common issue of alphanumeric passwords is users normally create week passwords for the reason 
that strong passwords are difficult to recognise and memorise. Graphical password authentication system is one of the 
approach to address the issues of alphanumeric passwords memorability. Wiedenbeck et al. proposed PassPoints in which 
a password is a sequence of any 5 to 8 user-selected click points on a system-assigned image. Nevertheless PassPoints 
still faces the problem of predictable click points and shoulder surfing attack. In this paper, we purposed HapticPoints an 
alternative graphical password system on smartphones in which user does not need any additional memory task but be 
able to prevent the following problems by adding haptic feedback to PassPoints as additional decoy click points. We also 
conduct a user study to evaluate and compare the usability of HapticPoints and PassPoints.

 TITLE  ADSaS: Comprehensive Real-time Anomaly Detection System

 AUTHORS   1. SooYeon Lee <tndus95a@korea.ac.kr> (Graduate School of Information Security, Korea University) / 2. Huy 
Kang Kim <cenda@korea.ac.kr> (Graduate School of Information Security, Korea University)

 ABSTRACT  Since with massive data growth, the need for autonomous and generic anomaly detection system is increased. 
However, developing one stand-alone generic anomaly detection system that is accurate and fast is still a challenge. In this 
paper, we propose conventional time-series analysis approaches, the Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model and Seasonal Trend decomposition using Loess (STL), to detect complex and various anomalies. Usually, 
SARIMA and STL are used in only for stationary and periodic time-series, but by combining, we show they can detect 
anomalies with high accuracy for data that is even noisy and non-periodic. We compared the algorithm to Long Short 
Term Memory (LSTM), a deep-learning based algorithm used for anomaly detection system. We used a total of seven real-
world datasets and four artificial datasets with different time-series properties to verify the performance of the proposed 
algorithm.

 TITLE  One-Pixel Adversarial Example that is Safe for Friendly Deep Neural Networks

 AUTHORS   1. Hyun Kwon <khkh@kaist.ac.kr> (KAIST (Korea Advanced Institute of Science and Technology)) / 2. Yongchul 
Kim <kyc6454@kma.ac.kr> (Korea Military Academy) / 3. Hyunsoo Yoon <hyoon@kaist.ac.kr> (KAIST (Korea 
Advanced Institute of Science and Technology)) / 4. Daeseon Choi <sunchoi@kongju.ac.kr> (Kongju National 
University)

 ABSTRACT  Deep neural networks (DNNs) offer superior performance in machine learning tasks such as image recognition, 
speech recognition, pattern analysis, and intrusion detection. In this paper, we propose a one- pixel adversarial example 
that is safe for friendly deep neural networks. By modifying only one pixel, our proposed method generates a one-pixel- 
safe adversarial example that can be misclassified by an enemy classifier and correctly classified by a friendly classifier. 
To verify the performance of the proposed method, we used the CIFAR-10 dataset, ResNet model classifiers, and the 
Tensorflow library in our experiments. Results show that the proposed method modified only one pixel to achieve success 
rates of 13.5% and 26.0% in targeted and untargeted attacks, respectively. The success rate is slightly lower than that 
of the conventional one- pixel method, which has success rates of 15% and 33.5% in targeted and untargeted attacks, 
respectively; however, this method protects 100% of the friendly classifiers. In addition, if the proposed method modifies 
five pixels, this method can achieve success rates of 20.5% and 52.0% in targeted and untargeted attacks, respectively.
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 TITLE  Efficient Ate-Based Pairing over the Attractive Classes of BN Curves

 AUTHORS   1. Yuki Nanjo <yuki.nanjo@s.okayama-u.ac.jp> (Okayama University) / 2. Md. Al-Amin Khandaker <khandaker@s.
okayama-u.ac.jp> (Okayama University) / 3. Masaaki Shirase <shirase@fun.ac.jp> (Future University Hakodate) 
/ 4. Takuya Kusaka <kusaka-t@okayama-u.ac.jp> (Okayama University) / 5. Yasuyuki Nogami <yasuyuki.
nogami@okayama-u.ac.jp> (Okayama University)

 ABSTRACT  This paper proposes two attractive classes of Barreto-Naehrig curve for ate-based pairing by imposing certain 
condition $\chi \equiv 7,11~(\bmod~12)$ on the integer $\chi$ that parameterizes the curve settings. The restriction results 
in an unparalleled way to determine a BN curve, its twisted curve coefficients, and obvious generator points. The proposed 
$\chi \equiv 11~(\bmod~12)$ are found to be more efficient than $\chi \equiv 7~(\bmod~12)$ together with pseudo 
8-sparse multiplication in Miller's algorithm. The authors also provide comparative implementations for the proposal.

   Short Session (Short Papers) :  (Day1 10:00 ~ 12:00)  Track2: ( Day1 10:00 ~ 12:00, Room : Crystal II )                                        

 TITLE  A Study on the Vulnerability Assessment for Digital I&C System in Nuclear Power Plant

 AUTHORS   1. Sung Cheol KIM <kim.sungcheol17@kdn.com> (KEPCO KDN) / 2. Ieck Chae EUOM <icelaken@gmail.com> 
(KEPCO KDN) / 3. Chang Hyun HA <koreabomb89@gmail.com> (KEPCO KDN) / 4. Bong Nam NOH <bbong@
jnu.ac.kr> (Chonnam National University)

 ABSTRACT  Nuclear Power Plant Operators have approached the problem of cyber security by simply attempting to 
apply nation’s committed catalog of cyber security requirements to every Critical Digital Asset under evaluation, which can 
number into the hundreds. This current approach does not provide guidance on how to assess a given requirement with 
a security method that effectively takes Critical Digital Asset. This paper analyzes Cyber Security Assessment Methodology 
about Industrial Control Systems. And then give an efficient methodology. It approaches the Regulations of KINAC/RS-015 
from a technical vulnerability point of view, where any given Critical Digital Asset can be assessed for vulnerabilities

 TITLE  An Analysis on Time-Series Data from PLCs in ICS/SCADA systems

 AUTHORS   1. Chanwoo Bae <cwbae@nsr.re.kr> (National Security Research Institute) / 2. Won-seok Hwang <hws@nsr.
re.kr> (National Security Research Institute)

 ABSTRACT  We suggest an RNN based anomaly detection method in ICS/SCADA systems (i.e., targeting PLCs), posing two 
significant domain problems; free from the type of PLC vendors and elaborate enough to cover sophisticated cyber attacks 
(e.g., PLC-blaster). In order to make RNN models achieve following goals, we use network-wide traceable features for the 
generality and adopt neural network models (i.e., RNNs) along with an automated hyperparameter optimization to enhance 
the performance. To show the effectivity, we have evaluated proposed method over the real-world PLC generating network 
traffic, also proved under the examplar targeting attack on the PLC testbed. Nowadays, the security issues on programmable 
logic controllers (PLCs) are rising as devices are connected through the network so that the PLCs can influence the entire 
ICS/SCADA system. However, we are facing the major following obstacle that makes it hard to detect operation threats 
(i.e., anomaly)  from the diverse types of PLCs due to their manufacturers' design and implementation, several proposed 
work yet have the vendor dependency problem. In this paper, we propose a novel and general anomaly detection method 
with a vendor-free property. For the generality, our method analyzes the network traffic transferred from each PLC, which 
depends on their program logic rather than their manufacturer. In addition, we employ the recurrent neural network (RNN) 
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models along with an automated hyperparameter optimization. We have successfully detected sophisticated cyber attacks 
(e.g., PLC-blaster) by extensive evaluations using the datasets from real-world ICS and the testbed.

 TITLE  IP Address Mutation Scheme using Vector Projection for Tactical Wireless Networks

 AUTHORS   Jong-Kwan Lee <c13525@gmail.com, jklee64@kma.ac.kr> (Korea Military Academy, Cyber Warfare Research 
Center)

 ABSTRACT  The static address configuration of networks and hosts allows attackers to have enough time to discover target 
networks and systems. On the other hands, the defenders always lack of time to respond because they can take action after 
attacker’s explicit behaviors. To eliminate the attacker’s asymmetric advantage of time, randomization of addresses have 
been suggested as Moving Target Defense (MTD) which is a promising technique to make the attacker’s reconnaissance 
activities difficult by dynamically changing network properties. In this paper, we propose the address mutation scheme 
using vector projection for tactical wireless networks that are a leader node centric hierarchical structure. In the proposed 
scheme, the addresses in the same networks are mutated with a simple vector operation by fully distributed manner 
and the mutated addresses are shared to all the members in the internal networks. Unlike the convenient schemes, all 
addresses associated with network entities for data delivery are mutated. We evaluate the performance of the proposed 
scheme by numerical analysis and experimental simulations. The results show that the proposed scheme could effectively 
randomize the addresses in tactical wireless networks.

 TITLE  Parallel Implementations of CHAM

 AUTHORS   1. Hwajeong Seo <hwajeong84@gmail.com> (Hansung University) / 2. Kyuhwang An <tigerk9212@gmail.
com> (Hansung University) / 3. Hyeokdong Kwon <hdgwon@naver.com> (Hansung University) / 4. Taehwan 
Park <pth5804@gmail.com> (Pusan National University) / 5. Zhi Hu <huzhi_math@csu.edu.cn> (Central 
South University) / 6. Howon Kim <howonkim@gmail.com> (Pusan National University)

 ABSTRACT  In this paper, we presented novel parallel implementations of CHAM-64/128 block cipher on modern ARM-
NEON processors. In order to accelerate the performance of the implementation of CHAM-64/128 block cipher, the full 
specifications of ARM-NEON processors are utilized in terms of instruction set and multiple cores. First, the SIMD feature of 
ARM processor is fully utilized. The modern ARM processor provides 2 16-bit vectorized instruction. By using the instruction 
sets and full register files, total 4 CHAM-64/128 encryptions are performed at once in data parallel way. Second, the 
dedicated SIMD instruction sets, namely NEON engine, is fully exploited. The NEON engine supports 8 X 16-bit vectorized 
instruction over 128-bit Q registers. The 24 CHAM-64/128 encryptions are performed at once in data parallel way. Third, 
both ARM and NEON instruction sets are well re-ordered in interleaved way. This mixed approach hides the pipeline stalls 
between each instruction set. Fourth, the multiple cores are exploited to maximize the performance in thread level. Finally, 
we achieved the 0.42 cycles/byte for implementation of CHAM-64/128 on ARM-NEON processors. This result is faster than 
the parallel implementation of LEA-128/128 and HIGHT-64/128 on same processor by about 4.04x and 9.92x, respectively.

 TITLE  Logarithm Design on Encrypted Data with Bitwise Operation

 AUTHORS   1. Yoo Joon Soo <sandiegojs@korea.ac.kr> (KOREA UNIVERSITY) / 2. Song Baek Kyung <baekkyung777@korea.
ac.kr> (KOREA UNIVERSITY) / 3. Yoon Ji Won <jiwon_yoon@korea.ac.kr> (KOREA UNIVERSITY)
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 ABSTRACT  Privacy preserving big data on cloud systems is becoming increasingly indispensable as the amount of 
information of the individuals is accumulated on our database system. As a way of maintaining security on cloud system, 
Homomorphic Encryption(HE) is considered to be theoretically eminent protecting against privacy leakage. However, 
insufficient number of operations on HE are developed, hindering many research developers to apply their knowledgeable 
techniques on this field.  Therefore, we propose a novel approach in constructing logarithm function based on mathematical 
theorem of Taylor expansion with fundamental arithmetic operations and  basic gate operations in usage.  Moreover, we 
present a more accurate way of deriving answers for logarithm using power and shift method.

   Session 1 (Long Papers) : Systems Security: ( Day1 15:20 ~ 17:20, Room Crystal I + II )                                      

 TITLE  VODKA: Virtualization Obfuscation using Dynamic Key Approach

 AUTHORS    1. Jae Yung Lee <jaeyung1001@naver.com> (Korea University) / 2. Jae Hyuk Suk <sjh2268@korea.ac.kr> (Korea 
University) / 3. Dong Hoon Lee <donghlee@korea.ac.kr> (Korea University)

 ABSTRACT  The virtualization obfuscation technique is known to possess excellent security among software protection 
techniques. However, research has shown that virtualization obfuscation techniques can be analyzed by automated 
analysis tools because the performance overhead is high whereas  the analysis is fixed. In this situation, additional protection 
techniques of the virtualization structure have been studied to supplement the protection strength of virtualization 
obfuscation. However, most of the proposed protection schemes require a special assumption or maximize the overhead 
of the program to be protected. In this paper, we propose a delayed analysis method for a lightweight virtualization 
structure that does not require a strong assumption. Hence, we propose a new virtual code protection scheme combining 
an anti-analysis technique and dynamic key, and explain its mechanism. This causes correspondence ambiguity between 
the virtual code and the handler code, thus causing analysis delay. In addition, we show the result of debugging or dynamic 
instrumentation experiment when the additional anti-analysis technique is applied.

 TITLE  Emulator Detection Techniques for Commercially Deployed Software

 AUTHORS   1. Daehee Jang <daehee87@kaist.ac.kr> (KAIST) / 2. Yunjong Jung <yunjong@kaist.ac.kr> (KAIST) / 3. 
Seongman Lee <augustus92@kaist.ac.kr> (KAIST) / 4. Minjoon Park <dinggul@kaist.ac.kr> (KAIST) / 5. Donguk 
Kim <donguk14.kim@samsung.com> (Samsung Research) / 6. Keunwhan Kwak <kh243.kwak@samsung.
com> (Samsung Research)

 ABSTRACT  A number of state-of-the-art software analysis platforms are built up based on system emulators owing to the 
need for effectively analyzing unknown program (i.e., execution path exploration). In general, malware has the ability to 
equip itself with powerful anti-emulation techniques to fingerprint the emulated system environment, thereby avoiding 
runtime analysis. However, this is not the only use case of anti-emulation. Recently, software vendors often leverage 
anti-emulation techniques to prevent their products reverse-engineered by attackers equipped with emulators. In this 
paper, we flip the conventional paradigm and explore anti-emulation techniques and discuss their efficacy in terms of \
emph{protecting commercially deployed software} against malicious emulators. In this paper, we discuss several ideas of 
anti-emulation techniques suited for large-scale commercial software. According to our study, deliberately misaligning the 
vectorization instruction (e.g., Intel SIMD, ARM NEON) can be served as a promising emulator detection technique over 
previous approaches. Based on the abnormal use of CPU vectorization technology, we design and implement efficient user 
level anti-emulation technique that outperforms previous methods in three aspects: (i) performance, (ii) accuracy, and (iii) 
reliability. To demonstrate the efficacy of our design, we implemented the detection algorithm as Android JNI library and 
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tested against 174 ARM-based android devices and several emulators.

 TITLE   Reliable Rowhammer Attack and Mitigation Based on Reverse Engineering Memory Address Mapping 
Algorithms

 AUTHORS   1. Saeyoung Oh <osy4997@postech.ac.kr> (Dept. of Computer Science and Engineering, Pohang University 
of Science and Technology (POSTECH), Republic of Korea) / 2. Jong Kim <jkim@postech.ac.kr> (Dept. of 
Computer Science and Engineering, Pohang University of Science and Technology (POSTECH), Republic of 
Korea)

 ABSTRACT  Rowhammer attacks intentionally induce a disturbance error caused by the interference of neighboring rows. 
To perform sophisticated rowhammer attacks, attackers need to access the neighboring rows of target data repeatedly to 
corrupt the data. In DRAM, the physical addresses of neighboring rows are not always contiguous even if they are located 
before or after a target row. Hence, it is important to know the mapping algorithm which maps between physical addresses 
and physical row indexes not only for an attack but also for protection. In this paper, we introduce a method to reverse 
engineer the exact mapping algorithm and demonstrate that the assumption in previous rowhammer work is faulty. In 
addition, we introduce a novel and efficient rowhammer method and improve existing mitigations that has a security hole 
caused by the faulty assumption. Finally, we evaluate the effectiveness of the proposed attack and show that the proposed 
mitigation almost perfectly defends against rowhammer attacks.

 TITLE  A Study on Analyzing Risk Scenarios about Vulnerabilities of Security Monitoring System

 AUTHORS   1. Kunwoo Kim <kunwoo.kim317@gmail.com> (Chung-Ang University) / 2. Jungduk Kim <jdkimsac@cau.
ac.kr> (Chung-Ang University)

 ABSTRACT  Information leakage by insider results in financial losses and ethical issues, thus affects business sustainability 
as well as corporate reputation. In Korea, infor-mation leakage by insiders occupies about 80% of the security incidents. 
Most companies are establishing preventive and prohibited security policies. Neverthe-less, security incidents are 
unceasing. Such restrictive security policies inhibit work efficiency or make employees recognize security negatively. Due 
to these problems, the rapid detection capability of leakage signs is required. To detect the signs of information leakage, 
security monitoring is an essential activity. This study is an exploratory case study that analyzed the current state of security 
moni-toring operated by three companies in Korea and provides some risk scenarios about information leakage. For the 
case analysis, this study collected each company’s security policy, systems linked with security monitoring system, and 
sys-tem log used. As a result, this study identified vulnerabilities that were difficult to be detected with the current security 
monitoring system, and drew 4 risk scenari-os that were likely to occur in the future. The results of this study will be useful 
for the companies that are planning to establish effective security monitoring system.

아래의 표는 day1 19:30~21:00 에 진행되는 “poster presentation” 세션의 내용입니다.

Title Name Affiliation

Information Assurance Requirements for software controlled 
measuring instruments

Seung-hwan Ju Korea Testing Laboratory

When Harry met Tinder: Security analysis of dating apps on Android Kuyju Kim Sungkyunkwan University

Blockchain Privacy Protection Using Anonymization Kyuhwang An Hansung University

Resilient Networking in Formation Flying UAVs Lebsework Negash Lemma KAIST
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  Session 2 (Long Papers) : Analysis and Visualization of Threats (Day2 09:20 ~ 10:50, Room : Crystal I + II)                                      

 TITLE   A New Bayesian Approach to Exploring Damaged assets by Monitoring Mission Failures Caused by 
Undetected Attack

 AUTHORS   1. Shinwoo Shim <shimshinwoo@lignex1.com> (LIG Nex1) / 2. Ji Won Yoon <jiwon_yoon@korea.ac.kr> 
(Korea University)

 ABSTRACT  Modern military systems operated with a complex of computers and software may have mission failure which 
is caused by undetected attacks. Insuch situations, it is important to find out which assets are damaged. After identifying 
damaged assets, we need to immediately examine the  damaged assets to defend against the attacks. However, it is not 
straightforward to explore the damaged assets because there are the complicated relationships among assets, tasks and 
missions. In this paper, we propose an effective methodology to infer the damaged assets given observed mission impacts 
in a Bayesian framework. We used Bayesian networks to model assets, tasks, missions and to set the relationships among 
them. Our approach visually infers and identifies the damaged assets with the probability. We show that proposed Bayesian 
framework is practical and useful with the use case experiment.

 TITLE  Threat modeling and analysis of voice assistant applications

 AUTHORS   1. Geumhwan Cho <geumhwan@skku.edu> (Sungkyunkwan University) / 2. Jusop Choi <cjs1992@skku.
edu> (Sungkyunkwan University) / 3. Hyoungshick Kim <hyoung@skku.edu> (Sungkyunkwan University)  4. 
Sangwon Hyun <shyun@chosun.ac.kr> (Chosun University)  5. Jungwoo Ryoo <jryoo@psu.edu> (Pennsylvania 
State University)

 ABSTRACT  Voice assistant is an application that helps users to interact with their devices using voice commands in a 
more intuitive and natural manner. Recently, many voice assistant applications (e.g., Apple's Siri and Google's Now) have 
been popularly deployed on smartphones and voice-controlled smart speakers. However, the threat and security of those 
applications have been examined only in very few studies. In this paper, we identify potential threats to voice assistant 
applications and assess the risk of those threats using the STRIDE and DREAD models. Our threat modeling demonstrates 
that generic voice assistants can potentially have 16 security threats. To mitigate the identified threats, we also propose 
several defense strategies.

 TITLE  AlertVision: Visualizing Security Alerts

 AUTHORS   1. Jina Hong <jina3453@kaist.ac.kr> (KAIST) / 2. JinKi Lee <jinki.lee@ahnlab.com> (AhnLab) / 3. HyunKyu 
Lee <hyunkyu.lee@ahnlab.com> (AhnLab) / 4. YoonHa Chang <yoonha.chang@ahnlab.com> (AhnLab) / 5. 
KwangHo Choi <kwangho.choi@ahnlab.com> (AhnLab) / 6. Sang Kil Cha <sangkilc@kaist.ac.kr> (KAIST)

 ABSTRACT  Security is not just a technical problem, but it is a business problem. Companies are facing highly-sophisticated 
and targeted cyber attacks everyday, and losing a huge amount of money as well as private data. Threat intelligence helps 
in predicting and reacting to such problems, but extracting well-organized threat intelligence from enormous amount 
of information is significantly challenging. In this paper, we propose a novel technique for visualizing security alerts, and 
implement it in a system that we call AlertVision, which provides an analyst with a visual summary about the correlation 
between security alerts. The visualization helps in understanding various threats in wild in an intuitive manner, and 
eventually benefits the analyst to build TI. We applied our technique on real-world data obtained from the network of 85 



W
IS

A
 2

01
8

Th
e 

19
th

 W
or

ld
 C

on
fe

re
nc

e 
on

 In
fo

rm
at

io
n 

Se
cu

ri
ty

 A
pp

lic
at

io
ns

17

organizations, which include 5,801,619 security events in total, and summarized lessons learned.

   Session 3 (Long Papers) : Applied Crypto: ( Day3, 09:50 ~ 11:50, Room : Crystal I + II )                                             

 TITLE   Secure Comparison Protocol with Encrypted Output and the Computation for Proceeding 2 bits-by-2 
bits

 AUTHORS   1. Takumi Kobayashi <s179506@matsu.shimane-u.ac.jp> (Interdisciplinary Graduate School of Science and 
Engineering, Shimane University) / 2. Keisuke Hakuta <hakuta@cis.shimane-u.ac.jp> (Institute of Science and 
Engineering, Academic Assembly, Shimane University)

 ABSTRACT  A secure comparison protocol computes a comparison result between private information from inputs 
without leakage of the information. It is a very important factor in many potential applications such as secure multi-party 
computation. These protocols under Yao's Millionaires' Problem output a plaintext of a comparison result. Because of 
this feature, however, these protocols are not suitable for some applications such as secure biometrics, secure statistics 
and so on. From this concern, we focus on a secure comparison protocol whose output is one bit encrypted comparison 
result. In recent works, the computation of such protocols proceeds bit-by-bit. For this reason, these protocols still have a 
problem about the efficiency. In this paper, as a first step of our study, we propose two secure comparison protocols with 
encrypted output. As an interesting feature, the computation of one of our protocols proceeds 2 bits-by-2 bits. We prove 
the correctness of our protocols and estimate the computational cost. Moreover we discuss the security of our protocols 
against semi-honest model.

 

 TITLE  Blockchain-based Decentralized Key Management System with Quantum Resistance

 AUTHORS    1. Hyeongcheol An <anh1026@kaist.ac.kr> (KAIST) / 2. Rakyong Choi <thepride@kaist.ac.kr> (KAIST) / 3. 
Kwangjo Kim <kkj@kaist.ac.kr> (KAIST)

 ABSTRACT  The blockchain technique was first proposed called Bitcoin in 2008 and is a distributed database technology. 
Public Key Infrastructure(PKI) system, which is one of the key management systems, is a centralized system. There is a 
possibility of single point failure in currently used centralized PKI system. Classical digital signature algorithm; ECDSA has 
used the well-known cryptocurrencies such as  Bitcoin and Ethereum. Using the Shor's algorithm, it is vulnerable to an 
attack by the quantum adversary. In this paper, we propose a blockchain-based key management system using quantum-
resistant cryptography. Since it uses a GLP digital signature scheme, which is a lattice-based digital signature scheme. 
Therefore, our construction is based on quantum-resistant cryptography, it is secure against the attack of a quantum 
adversary and ensures long-term safety. In addition, we design a decentralized blockchain structure, and it is secure for the 
single point of failure.

 TITLE  A Construction of a Keyword Search to Allow Partial Matching with a Block Cipher

 AUTHORS   1. Yuta Kodera <yuta.kodera@s.okayama-u.ac.jp> (Okayama University, Japan) / 2. Minoru Kuribayashi 
<kminoru@okayama-u.ac.jp> (Okayama University, Japan) / 3. Takuya Kusaka <kusaka-t@okayama-u.ac.jp> 
(Okayama University, Japan) / 4. Yasuyuki Nogami <yasuyuki.nogami@okayama-u.ac.jp> (Okayama University, 
Japan)
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 ABSTRACT  This paper considers a new construction of a keyword search including partial matching on an encrypted 
document. Typically, an index-based searchable symmetric encryption has been investigated. However, it makes a 
partial keyword matching difficult without a designated trapdoor. Thus, our objective is to propose a keyword search 
scheme which enables us to search a part of a keyword only by building trapdoors of each original keyword. The main 
idea is to insulate each character of a keyword into a bitstream of the sequence generated by a cryptographically secure 
pseudorandom number generator. It achieves a partial search by giving a restriction on the length of a keyword.

 TITLE  Compact LEA and HIGHT Implementations on 8-bit AVR and 16-bit MSP Processors

 AUTHORS   1. Hwajeong Seo <hwajeong84@gmail.com> (Hansung University) / 2. Kyuhwang An <tigerk9212@gmail.
com> (Hansung University) / 3. Hyeokdong Kwon <hdgwon@naver.com> (Hansung University)

 ABSTRACT  In this paper, we revisited the previous LEA and HIGHT implementations on the low-end embedded 
processors. First, the general purpose registers are fully utilized to cache the intermediate results of delta variable during 
key scheduling process of LEA. By caching the delta variables, the number of memory access is replaced to the relatively 
cheap register access. Similarly, the master key and plaintext are cached during key scheduling and encryption of HIGHT 
block cipher, respectively. Second, stack storage and pointer are fully utilized to store the intermediate results and access 
the round keys. This approach solves the limited storage problem and saves one general purpose register. Third, indirect 
addressing mode is more efficient than indexed addressing mode. In the decryption process of LEA, the round key pair is 
efficiently accessed through indirect addressing with minor address modication. Fourth, 8-bit word operations for HIGHT is 
efficiently handled by 16-bit wise instruction of 16-bit MSP processors. Finally, the proposed LEA implementations on the 
representative 8-bit AVR and 16-bit MSP processors are fully evaluated in terms of code size, RAM and execution timing. The 
proposed implementations over the target processors (8-bit AVR processor, 16-bit MSP processor) are faster than previous 
works by (13.6%, 9.3%), (0.6%, 8.5%), and (3.4%, 1.5%) for key scheduling, encryption, and decryption, respectively. Similarly, 
the proposed HIGHT implementations on the 16-bit MSP processors are faster than previous works by 38.6%, 33.7%, and 
33.6% for key scheduling, encryption, and decryption, respectively.

 TITLE  Network Deployments of Bitcoin Peers and Malicious Nodes based on Darknet Sensor (short paper)

 AUTHORS   1. Mitsuyoshi Imamura <ic140tg528@gmail.com> (University of Tsukuba) / 2. Kazumasa Omote <omote@risk.
tsukuba.ac.jp> (University of Tsukuba)

 ABSTRACT  Bitcoin depends on Peer-to-Peer (P2P) network in a major way and shares the connecting IP address list with 
the nearest peer. In addition, the blockchain which is the basic technology can be accessed by anyone, and the transaction 
stored in the block can be checked anytime. Recent research has reported that anonymity of such a bitcoin P2P network 
is low, regardless of whether peer uses the anonymizers like TOR to keep the anonymity. This fact shows the risk of the 
malicious users being able to use this public information without exception. However, when the malicious user is hiding 
behind the network and browsing public information, it is difficult to distinguish between a malicious user and a honest 
one, and it is a challenge to detect signs of hidden threats. In this research, we propose a method to analyze by combining 
two kinds of IP address distributions: Bitcoion peer and malicious node (not in the bitcoin network), in order to obtain 
characteristics of hidden users. As a result, we confirmed that the nodes, which matched the third octet of the IP address in 
the bitcoin network peer, sent the packet to the darknet. The contribution of this paper is three-fold: (1) we employ a novel 
approach to analyze a bitcoin network using Darknet dataset, (2) we identify the malicious node in the same network as the 
honest peer, and (3) we clarify the network deployments of Bitcoin peers and malicious nodes.
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  Conference Committee  ◀

2018 사이버안보(보안) 논문 공모전 수상자 리스트
수상 논문 제목 저자 학교

 Grand Prize
From Verification to Learning for Defense 
against Adversarial Examples in Neural 

Networks

Sangdon Park, Radoslav Ivanov, James 
Weimer and Insup Lee

University of 
Pennsylvania

First Prize

Unraveling the Mystery of Control Plane 
Procedures in Operational LTE Networks

Hongil Kim, Jiho Lee, Eunkyu Lee and 
Yongdae Kim KAIST

VOGUE : Automatic Generation of Permission 
Models for Verification of SDN Application 

Behaviors

Heedo Kang, Seungwon Shin, Vinod 
Yegneswaran, Shalini Ghosh and Phillip 

Porras
KAIST

Measuring Korean Compromised Code 
Signing Certificates

Doowon Kim, Bum Jun Kwon, Sanghyun 
Hong and Tudor Dumitraș

University of 
Maryland

사이버보안법제 마련에 있어 쟁점과제와 입법
방향-프라이버시 보호를 위한 합리적 제도방안 마

련을 중심으로-
Beop-Yeon Kim, Moon-Ho Joo, Seung-Jo 

Baek and Hun-Yeong Kwon
Korea Univ.

Second Prize

Emulator Detection Techniques for 
Commercially Deployed Software

Daehee Jang, Yunjong Jung, Sungman Lee, 
Minjoon Park and Brent Byunghoon Kang KAIST

REPICA: Rewriting Position Independent 
Code of ARM Dongsoo Ha, Wenhui Jin and Heekuck Oh Hanyang Univ.

Sensor Attacks on COTS Wide-area Fire 
Detector for Critical Infrastructure

Hocheol Shin, Juhwan Noh, Dohyun Kim and 
Yongdae Kim. KAIST

SODA: A Software-defined Security 
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Abstract. Mobile web browsers are evolved to support the functional-
ities presented by HTML5. With the hardware accessibility of HTML5,
it is now possible to access sensor hardware of a mobile device through a
web page regardless of the need for a mobile application. In this paper,
we analyze the security impact of accessing sensor hardware of a mobile
device from mobile web page. First, we present the test results of hard-
ware accessibility from mobile web browsers. Second, to raise awareness
of the seriousness of hardware accessibility, we introduce a new POC
attack LightTracker which infers the victim’s location using light sensor.
We also show the effectiveness of the attack in real world.

1 Introduction

HTML5 is a fifth hypertext markup language standard which have introduced
many new features to keep pace with advances in computer performance and
increased access to websites. HTML5 has aimed to reduce the necessity for plug-
ins (e.g., Flash, Silverlight). Browsers that support HTML5 can play multimedia
such as video and audio, utilize offline storage of web resource, and graphic work
using canvas API without the assistance of external programs.

However, as the functionalities of HTML5 have increased, there have been
a number of attack paths exploiting vulnerabilities of the functionalities. Nu-
merous privacy attack methods have been reported using HTML5 features, for
example browser fingerprinting through canvas API [10], and side-channel attack
through Application Cache [24].

One new feature of HTML5 is hardware accessibility of web browsers. This
feature has big security implication for mobile devices which have various types of
sensor. On Android system, in order to access the hardware of a mobile device, it
needs a capability called permission. Most of popular browsers require over eight
permissions related to hardware access. In this environment, if the hardware
access permission is given to a web browser and it does not have a fine access
control mechanism for hardware, an attacker can create a malicious web server
and control the hardware of the connected user device without any restriction
and get the hardware data.



Security Analysis of Mobile Web Browser
Hardware Accessibility:

Study with Ambient Light Sensors

Sanghak Lee, Sangwoo Ji, and Jong Kim

Department of Computer Science and Engineering
Pohang University of Science and Technology (POSTECH)

Email: {uzbu89, sangwooji, jkim}@postech.ac.kr

Abstract. Mobile web browsers are evolved to support the functional-
ities presented by HTML5. With the hardware accessibility of HTML5,
it is now possible to access sensor hardware of a mobile device through a
web page regardless of the need for a mobile application. In this paper,
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1 Introduction

HTML5 is a fifth hypertext markup language standard which have introduced
many new features to keep pace with advances in computer performance and
increased access to websites. HTML5 has aimed to reduce the necessity for plug-
ins (e.g., Flash, Silverlight). Browsers that support HTML5 can play multimedia
such as video and audio, utilize offline storage of web resource, and graphic work
using canvas API without the assistance of external programs.

However, as the functionalities of HTML5 have increased, there have been
a number of attack paths exploiting vulnerabilities of the functionalities. Nu-
merous privacy attack methods have been reported using HTML5 features, for
example browser fingerprinting through canvas API [10], and side-channel attack
through Application Cache [24].

One new feature of HTML5 is hardware accessibility of web browsers. This
feature has big security implication for mobile devices which have various types of
sensor. On Android system, in order to access the hardware of a mobile device, it
needs a capability called permission. Most of popular browsers require over eight
permissions related to hardware access. In this environment, if the hardware
access permission is given to a web browser and it does not have a fine access
control mechanism for hardware, an attacker can create a malicious web server
and control the hardware of the connected user device without any restriction
and get the hardware data.
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GPS. Web applications can access GPS data through Geolocation API. This
API is used to retrieve the geographic location of a hosting device. This API
directly exposes the user’s location, so location data should be controlled with
the user’s perception, i.e., the browsers should acquire permission through a user
interface, and this permission should be a revocable one.

Vibration. Vibrator is an actuator. Vibration functionality does not generate
data to be used to leak privacy data. However, vibration stimuli can be used as
an agitation source for privacy attack. For example, accelerators or gyroscopes
may be subject to tiny imperfections during their manufacturing process [5].
Vibration API can help discovering those imperfections by introducing vibration
patterns. Also, any unique imperfection can be used to fingerprint mobile devices.
Moreover, continuous method calls for vibration could exhaust the battery power
of the device which harms the availability or leads to privacy leaks [13].

Generic sensor. Generic sensors consist of accelerometer, gyroscope, magne-
tometer, and ambient light sensor. When these sensors are in combination with
other functionality, or used over time, user’s privacy can be in risk by a sim-
ple attack such as user identification with fingerprinting. Numerous researchers
propose various privacy attack methods using motion sensor data [4, 32].

Multimedia. Allowing the access of multimedia data in mobile devices is di-
rectly related to the user’s privacy. Leaking multimedia data itself can harm the
confidentiality of the device [6], moreover other non-multimedia data can also be
used to leak the user’s private data, for example, embedding the user’s location
in the metadata of EXIF file.

2.2 Current Status of Hardware Access

Test Browser Selection. We test the hardware accessibility of mobile web
browsers to identify how the real browsers handle security consideration de-
scribed in 2.1. From the market share report of NETMARKETSHARE [19], we
select representative mobile browsers such as Chrome, UC Browsers, Samsung
Internet, and Firefox for hardware accessibility tests (table 1). We exclude Sa-
fari browser because it is only for iOS, so we cannot compare this browser with

Table 1. Mobile browsers: numbers of downloads and tested version

Browser Tested version # of Downloads

Chrome 58.0.3029.83 1,000,000,000+
UC Browser 11.3.2.960 100,000,000+

Samsung Internet 5.4.00-75 100,000,000+
Firefox 53.0.2 100,000,000+

In this paper, we investigate the security impact of hardware accessibility
through mobile web browsers. First, to identify reality of hardware access prob-
lem and aware their risk, we investigate the security and privacy aspects and the
current status of hardware access in various environments. We show accessible
hardware components from various mobile web browsers and their access test
results. Through this investigation, we show that most of popular browsers have
no access restriction to motion sensor and ambient light sensor. Second, to show
the seriousness of this hardware accessibility, we show the POC attack Light-
Tracker using ambient light sensor. Most attack methods through mobile device
hardware are concentrated only to using motion sensor. The risk of leaking light
data is underestimated despite of the possibility of leaking privacy. To show the
hardware access problem, we introduce LightTracker which infers the victim’s
location through ambient light sensor data. We show the evaluation results of
LightTrack’s effectiveness in real environments.

This paper is organized as follows. In Section 2, we show the hardware ac-
cessibility status in mobile environments. Section 3 introduces the POC attack
LightTracker using web browser in mobile device. Section 4 shows the evaluation
results of LightTracker. Finally, in Section 5, we conclude the work and discuss
the future works.

2 Hardware Accessibility in Mobile Environments

In this section, we investigate the security & privacy aspects of hardware access
and the current state of hardware access in various environments, i.e., combina-
tions of mobile phone and web browsers.

2.1 Security & Privacy Consideration of Hardware Components

Web applications tend to have more accessibility to hardware of mobile devices.
According to World Wide Web Consortium (W3C), mobile web applications can
access the hardware data such as battery status [25], GPS [26], vibration [27],
ambient light sensor [28], multimedia (camera, microphone) [29], and motion
sensor [30].

W3C specification provides security & privacy consideration on hardware
access within mobile browsers. Including these consideration, we investigate all
concerns for each hardware component.

Battery Status. Battery status API shows current remaining power, charging
status, and (dis)charging time of the hosting device. With tracking the change of
the remaining power, it could leak the user’s privacy [20]. To prevent such kind
of threats, W3C suggests that web browsers should 1) not expose high precision
data of battery, 2) enforce the user permission requirements, 3) inform the user
of the API use, and 4) obfuscate the exposed value of the battery.
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Table 2. Hardware access tests in mobile browsers (O:Required permission , X:Zero-
permission, -: Not supported)

Table 3. Reported attack using hardware or its data in mobile devices (Accel: Ac-
celerometer, Gyro: Gyroscope, Orient: Orientation, Magnet: Magnet)

Attack Work Access Hardware

Inferring input

PIN Skimmer [22] in-app Camera, Microphone
PIN Skimming [23] in-app Light sensor
Keylogging by Mic [16] in-app Microphone
ACCessory [21] in-app Accel
Tapprints [14] in-app Accel, Gyro
Accel side channel [1] in-app Accel
Motion side channel [3] in-app Accel, Gyro
TapLogger [31] in-app Accel, Orient
TouchLogger [2] in-app Orient
TouchSignatures [11] in-browser Accel, Gyro, Orient

Tracking

Route identification [17] in-app Accel, Gyro, Magnet
ACComplice [7] in-app Accel
Activity recognition [9] in-app Accel
Peril tracking [18] in-app Accel, Gyro, Magnet
Sensor fingerprinting [4] in-browser Accel, Gyro

2.3 Threat Models in Hardware Access

To better understand the security and privacy issues on hardware access in mo-
bile devices, we performed a survey of attacks using sensor data through both
browsers and applications. We classified the attacks into two classes, Inferring
input, and Tracking, then we compare the access route and used hardware com-
ponents of each attack (table 3).

other browsers in Android. Also, we select Firefox because of its high HTML5
acceptance score [8]. Note that all tested browsers require most of hardware ac-
cess permissions such as camera, microphone, GPS, network connection state,
and vibration. Therefore if browsers have no self-control mechanism while ac-
cessing the hardware, then web applications are able to access the hardware of
the mobile device without any restrictions.

Hardware Access Test. We test the data accessibility of eight hardware
components (i.e., camera, microphone, GPS, network connection state, vibra-
tion, motion, light, and battery status) of three different mobile devices, Galaxy
Note3, Galaxy S5, and Nexus 5. For privacy-sensitive hardware components such
as camera, microphone, and GPS, all tested browsers require user’s permission
to access the hardware component’s data. However, other hardware components’
data such as network connection state, vibration, motion sensor, ambient light
sensor, and battery status could be accessed without permission, except the
vibration by the Firefox browser. Also, we observe that each browser shows
different access control policy to hardware. As we mentioned in 2.1, seemingly
privacy-insensitive hardware in mobile devices can be used to leak the user’s
privacy.

Also, we survey whether each tested browser has setting options for the
hardware access. The result shows that only the Chrome browser has the setting
options for camera, microphone, and GPS (Fig. 1(a)). This option only covers
the default access policy, whether asking first before allowing sites to use hard-
ware component or completely blocking the access to the hardware component
(Fig. 1(b)).

(a) Access Setting (b) Access Blocked

Fig. 1. Setting options for the hardware access in Chrome
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Table 2. Hardware access tests in mobile browsers (O:Required permission , X:Zero-
permission, -: Not supported)

Table 3. Reported attack using hardware or its data in mobile devices (Accel: Ac-
celerometer, Gyro: Gyroscope, Orient: Orientation, Magnet: Magnet)

Attack Work Access Hardware

Inferring input

PIN Skimmer [22] in-app Camera, Microphone
PIN Skimming [23] in-app Light sensor
Keylogging by Mic [16] in-app Microphone
ACCessory [21] in-app Accel
Tapprints [14] in-app Accel, Gyro
Accel side channel [1] in-app Accel
Motion side channel [3] in-app Accel, Gyro
TapLogger [31] in-app Accel, Orient
TouchLogger [2] in-app Orient
TouchSignatures [11] in-browser Accel, Gyro, Orient

Tracking

Route identification [17] in-app Accel, Gyro, Magnet
ACComplice [7] in-app Accel
Activity recognition [9] in-app Accel
Peril tracking [18] in-app Accel, Gyro, Magnet
Sensor fingerprinting [4] in-browser Accel, Gyro

2.3 Threat Models in Hardware Access

To better understand the security and privacy issues on hardware access in mo-
bile devices, we performed a survey of attacks using sensor data through both
browsers and applications. We classified the attacks into two classes, Inferring
input, and Tracking, then we compare the access route and used hardware com-
ponents of each attack (table 3).
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Fig. 2. Overall attack procedure of LightTracker

whether this access is the victim’s first visit or not. If this is the first visit,
the attacker fingerprints the client browser. Note that we assume the user’s
IP address (subnet) represents the user’s location.

� The client web browser starts to download the HTML document and runs
the script.

� By running the script, the client browser transmits the sensor data to the
attacker’s server. To create light map, LightTracker manages the motion
sensor data with light data. Note that this process is not mandatory if the
server already has a light map for the victim; in this case, LightTracker
requires no privilege to access motion sensor data.

� The client browser transmits the light data to the server. Then LightTracker
checks the data with the map to identify the victim’s location.

3.2 Attack Details

In this subsection, we explain details of the attack; checking user’s identity,
making light data map, and identifying user’s location.

Checking User’s Identity. To distinguish a visited victim, LightTracker needs
to check the victim’s identity. Various fingerprinting work [4, 15] can be used.
As HTML5 has numerous new features such as canvas API and hardware access
API, attack surfaces for fingerprinting are extended.

Inferring Input. Inferring input attacks consist of identifying the user’s touch
input to infer password/PINs using sensors such as camera, microphone, light,
accelerometer, gyroscope, and magnetometer. Except PIN Skimmer [22], PIN
Skimming [23], and Keylogging [16], most of the reported inferring input attacks
exploit motion sensor data from accelerometer especially. The attacks exploit
the characteristic; when the user types or touches a screen on his/her device,
these actions induce the device orientation or motion traces which might be
distinguishable from those of other actions.

Tracking. Tracking attacks include inferring the victim’s route (or activity)
and fingerprinting victim’s device. Most of reported tracking attacks exploit
motion sensor data as same as inferring input attacks. These kinds of attacks
use the data whose variation is usually bigger than those of inferring input
attacks. This feature is well fit for attacks through browsers; because browsers
have a reduced sampling rate of sensors which is about 3-5 times slower than
the original sampling rate [11, 12], it is relatively hard to distinguish the small
variation of data at browsers.

Through the investigation, we have observed that most of the reported attacks
consider only motion sensors among zero-permission hardware components. Only
PIN Skimming [23] uses the light data from ambient light sensors in mobile de-
vices. The risk of leaking light data is underestimated despite of the possibility
of side channel attack exploiting light data. Also, most attacks are conducted
through applications, not browsers. However, attacks through browsers can ex-
pose a victim easier than attacks through applications, because browser-based
attacks need no installation, but just need to allure the victim to the attacker’s
web pages.

3 POC: LightTracker

In this section, to raise the awareness of the risk of the ambient light sensor data,
we introduce LightTracker, which infers the victim’s location through ambient
light sensor data. LightTracker is deployed on the attacker’s server. When a
victim visits the attacker’s web pages, LightTracker collects the light data of
the victim’s mobile device. Next, LightTracker compares the collected data and
predefined light map data to infer the victim’s position.

3.1 Attack Procedure

We explain overall attack procedures of LightTracker (Fig. 2). It assumes that
a victim visits the attacker’s web pages. The attacker’s web server includes
JavaScript which makes the client’s device leak the sensor data.

� A victim visits the web pages (attacker.com) which include a malicious
JavaScript. Then the attacker checks the victim’s identity, and examines
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Fig. 2. Overall attack procedure of LightTracker

whether this access is the victim’s first visit or not. If this is the first visit,
the attacker fingerprints the client browser. Note that we assume the user’s
IP address (subnet) represents the user’s location.

� The client web browser starts to download the HTML document and runs
the script.

� By running the script, the client browser transmits the sensor data to the
attacker’s server. To create light map, LightTracker manages the motion
sensor data with light data. Note that this process is not mandatory if the
server already has a light map for the victim; in this case, LightTracker
requires no privilege to access motion sensor data.

� The client browser transmits the light data to the server. Then LightTracker
checks the data with the map to identify the victim’s location.

3.2 Attack Details

In this subsection, we explain details of the attack; checking user’s identity,
making light data map, and identifying user’s location.

Checking User’s Identity. To distinguish a visited victim, LightTracker needs
to check the victim’s identity. Various fingerprinting work [4, 15] can be used.
As HTML5 has numerous new features such as canvas API and hardware access
API, attack surfaces for fingerprinting are extended.

Inferring Input. Inferring input attacks consist of identifying the user’s touch
input to infer password/PINs using sensors such as camera, microphone, light,
accelerometer, gyroscope, and magnetometer. Except PIN Skimmer [22], PIN
Skimming [23], and Keylogging [16], most of the reported inferring input attacks
exploit motion sensor data from accelerometer especially. The attacks exploit
the characteristic; when the user types or touches a screen on his/her device,
these actions induce the device orientation or motion traces which might be
distinguishable from those of other actions.

Tracking. Tracking attacks include inferring the victim’s route (or activity)
and fingerprinting victim’s device. Most of reported tracking attacks exploit
motion sensor data as same as inferring input attacks. These kinds of attacks
use the data whose variation is usually bigger than those of inferring input
attacks. This feature is well fit for attacks through browsers; because browsers
have a reduced sampling rate of sensors which is about 3-5 times slower than
the original sampling rate [11, 12], it is relatively hard to distinguish the small
variation of data at browsers.

Through the investigation, we have observed that most of the reported attacks
consider only motion sensors among zero-permission hardware components. Only
PIN Skimming [23] uses the light data from ambient light sensors in mobile de-
vices. The risk of leaking light data is underestimated despite of the possibility
of side channel attack exploiting light data. Also, most attacks are conducted
through applications, not browsers. However, attacks through browsers can ex-
pose a victim easier than attacks through applications, because browser-based
attacks need no installation, but just need to allure the victim to the attacker’s
web pages.

3 POC: LightTracker

In this section, to raise the awareness of the risk of the ambient light sensor data,
we introduce LightTracker, which infers the victim’s location through ambient
light sensor data. LightTracker is deployed on the attacker’s server. When a
victim visits the attacker’s web pages, LightTracker collects the light data of
the victim’s mobile device. Next, LightTracker compares the collected data and
predefined light map data to infer the victim’s position.

3.1 Attack Procedure

We explain overall attack procedures of LightTracker (Fig. 2). It assumes that
a victim visits the attacker’s web pages. The attacker’s web server includes
JavaScript which makes the client’s device leak the sensor data.

� A victim visits the web pages (attacker.com) which include a malicious
JavaScript. Then the attacker checks the victim’s identity, and examines
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(a) The apartment modeling

(b) Floorplan of the apartment

Fig. 3. Modeling and floorplan of test environments used for testing LightTracker.
Each bulb icon denotes a light source, and its size represents the light power of the
source.

4.2 Making Light Data Map

We measured the ambient light sensor data for each unit area 10 times, and
recorded the mean value. With this data, we made a light map to test the
effectiveness of LightTracker. The light intensity value is directly related to the
distance from light sources. In Fig. 4, we visualized the light map in log scale,
and it shows that we can infer the victim’s location with the light intensity value.

Table 4. Light intensity data for each area

LightTraker collects user’s IP address to match user’s location with the lo-
cation’s light data map. The user may visit the attacker’s site with different IP
addresses as he moves around to different places. For each IP address, we may
build a light data map for a user’s mobile device. Therefore user’s identity with
an IP address is used to find a matching light data map. We assume that each
device needs a different light data map since light sensors are not equal. How-
ever, if we use a normalization method for sensor data, it may be possible to use
the same light data map for different mobile devices.

Making the Light Data Map. A Light data map represents the value of
the light intensity for each area unit. After identifying the victim’s identity and
approximate location, LightTracker checks whether the light map for the victim’s
location exists or not. If LightTracker has already built the corresponding light
map of a mobile device for the location, then LightTracker skips making light
map phase. On the other hands, if LightTracker does not have enough data for
a light map for the corresponding location, it collects data from motion sensors
(accelerometer, gyroscope, and magnetometer) to infer the victim’s movements.
By inferring this movement, LightTracker is able to make the naive geographic
map [17]. At the same time, to make a light data map, LightTracker also gathers
the ambient light sensor data and combines the data with each area unit of the
geographic map. Note that collecting motion data is not mandatory. A light map
data for a specific place can be generated if that place are physically accessible
to the attacker. He or she can create more accurate light map and matches the
map with the IP address of that place. In this way, LightTracker obtains more
accurate light map than the map derived from the motion sensor data.

Identifying the User’s Location. With the light data map, LightTracker can
infer the current victim’s location with transmitted light data from the victim’s
device. LightTracker compares the transmitted data with the value of unit areas
in the light data map, and finds the exact location which has the most similar
light value.

4 LightTracker Evaluation

We implemented a prototype of LightTracker and tested its effectiveness.

4.1 Test Environments

We tested the effectiveness of LightTracker in a typical apartment covering a
10×6 m2 area and consisting of a living room connected to the bedroom and
the toilet (Fig. 3(a)). We made a light map manually for an accurate location
inferring. We used Samsung Galaxy Note3 as a test device and a Firefox browser
to acquire ambient light data. We divided the apartment into 1×1 m2 area units,
and measured the ambient light data for each area.
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(b) Floorplan of the apartment

Fig. 3. Modeling and floorplan of test environments used for testing LightTracker.
Each bulb icon denotes a light source, and its size represents the light power of the
source.

4.2 Making Light Data Map

We measured the ambient light sensor data for each unit area 10 times, and
recorded the mean value. With this data, we made a light map to test the
effectiveness of LightTracker. The light intensity value is directly related to the
distance from light sources. In Fig. 4, we visualized the light map in log scale,
and it shows that we can infer the victim’s location with the light intensity value.

Table 4. Light intensity data for each area

LightTraker collects user’s IP address to match user’s location with the lo-
cation’s light data map. The user may visit the attacker’s site with different IP
addresses as he moves around to different places. For each IP address, we may
build a light data map for a user’s mobile device. Therefore user’s identity with
an IP address is used to find a matching light data map. We assume that each
device needs a different light data map since light sensors are not equal. How-
ever, if we use a normalization method for sensor data, it may be possible to use
the same light data map for different mobile devices.

Making the Light Data Map. A Light data map represents the value of
the light intensity for each area unit. After identifying the victim’s identity and
approximate location, LightTracker checks whether the light map for the victim’s
location exists or not. If LightTracker has already built the corresponding light
map of a mobile device for the location, then LightTracker skips making light
map phase. On the other hands, if LightTracker does not have enough data for
a light map for the corresponding location, it collects data from motion sensors
(accelerometer, gyroscope, and magnetometer) to infer the victim’s movements.
By inferring this movement, LightTracker is able to make the naive geographic
map [17]. At the same time, to make a light data map, LightTracker also gathers
the ambient light sensor data and combines the data with each area unit of the
geographic map. Note that collecting motion data is not mandatory. A light map
data for a specific place can be generated if that place are physically accessible
to the attacker. He or she can create more accurate light map and matches the
map with the IP address of that place. In this way, LightTracker obtains more
accurate light map than the map derived from the motion sensor data.

Identifying the User’s Location. With the light data map, LightTracker can
infer the current victim’s location with transmitted light data from the victim’s
device. LightTracker compares the transmitted data with the value of unit areas
in the light data map, and finds the exact location which has the most similar
light value.

4 LightTracker Evaluation

We implemented a prototype of LightTracker and tested its effectiveness.

4.1 Test Environments

We tested the effectiveness of LightTracker in a typical apartment covering a
10×6 m2 area and consisting of a living room connected to the bedroom and
the toilet (Fig. 3(a)). We made a light map manually for an accurate location
inferring. We used Samsung Galaxy Note3 as a test device and a Firefox browser
to acquire ambient light data. We divided the apartment into 1×1 m2 area units,
and measured the ambient light data for each area.
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Fig. 4. The light map visualization in log scale

4.3 Effectiveness Evaluation

With the light map, LightTracker significantly reduces candidates of victim’s
location (table 4). In most case, the candidates are decreased to roughly 20 %
of total areas, through the light intensity value of that area. Especially, as the
light intensity value is bigger, LightTracker infers a more accurate position. For
example, among 50 m2 area, there exists only 1.22 m2 area whose light intensity
value is over 512 lux. Also, as the number of divided areas in location data map
increases, LightTracker can specify the victim’s location more accurately. More-
over, as LightTracker can be combined with motion-based user tracking system
orthogonally, it is possible to highly enhance the accuracy of user tracking.

5 Conclusion

In this paper, we investigated the security and privacy consideration of hard-
ware access through mobile web browsers. Despite of the W3C specification
and numerous in-app attacks, most popular browsers (e.g., Google Chrome, UC
Browser, Samsung Internet, and Mozilla Firefox) do not have access control
mechanism for motion sensor, vibration, battery status, and ambient light sen-
sor. Although many researchers have shown attacks with motion sensor, ambient
light sensor is underestimated despite of the possibility that it can be a medium
of side-channel attacks. To raise the awareness of the risk of ambient light sen-
sor, we have introduced a POC attack, LightTracker, which infers the victim’s
location. With the light data map, LightTracker can specify the victim’s position
accurately when the light intensity value is bigger.
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HapticPoints : The Extended PassPoints Graphical 
Password 

Abstract. The most common issue of alphanumeric passwords is users normal-
ly create weak passwords for the reason that strong passwords are difficult to 
recognise and memorise. Graphical password authentication system is one of 
the approach to address the issues of alphanumeric passwords memorability. 
Wiedenbeck et al. proposed PassPoints in which a password is a sequence of 
any 5 to 8 user-selected click points on a system-assigned image. Nevertheless 
PassPoints still faces the problem of predictable click points and shoulder surf-
ing attack. In this paper, we purposed HapticPoints an alternative graphical 
password system on smartphones in which user does not need any additional 
memory task but be able to prevent the following problems by adding haptic 
feedback to PassPoints as additional decoy click points. We also conduct a user 
study to evaluate and compare the usability of HapticPoints and PassPoints. 

Keywords: user authentication, passwords, graphical passwords, usable securi-
ty, shoulder surfing attack, PassPoints. 

1. Introduction 

Alphanumeric passwords are the most common approach for authentication but users 
normally create weak passwords for the reason that strong passwords are difficult to 
recognise and memorise[1][2].  

Graphical passwords have been proposed to solve the memorability problem based 
on the studies which indicated that humans are better at recognising and recalling 
images than alphanumeric passwords[2][3], Some graphical passwords provide a high 
password space and against password guessing attacks that is equal to or greater than 
typical alphanumeric passwords, but also difficult to use such as low success rate and 
taking too long login time[5], there is a trade-off between usability and cryptographic 
strength. 

The previous studies[1,2] show that recognition-based graphical password systems 
are an easier memory task than recall-based graphical password systems. In cued-re-
call graphical password systems, an external cue is provided to help remember infor-
mation. Tulving and Pearlstone  explain that items in human memory may be avail-
able but not accessible for retrieval and show that previously inaccessible information 
in a pure recall situation can be retrieved with the aid of a retrieval cue[3].  

PassPoints is a representative of cued-recall graphical password systems of particu-
lar interest and worthy of extensive study based on the previous study[6]. It extended 
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help the subject recall the memorised items. Examples of cued-recall graphical pass-
word systems are PassPoints[19] and Inkblot Authentication[16]. 

3. PassPoints 

PassPoints is a cued-recall graphical password systems which proposed by S. 
Wiedenbeck, J. Waters, J. Birget, A. Brodskiy, and N. Memon[19]. A password is a 
sequence of any n = 5 user-selected click points (pixels) on a system-assigned image. 
The user selects points by clicking on them using a mouse. During login, re-entry of 
the click-points must be in the correct order, and accurate within a system-specified 
tolerance. The image acts as a memory cue to the location of the originally chosen 
click-points (see Fig. 1). 

The underlying images of PassPoints for creating a password are not restricted to 
any types of images such as drawings, Perspective photos,  Human face images can 
be used; users can even install their own images. Natural images help users remember 
complex passwords better. This suggests that in a human context, the (conditional) 
entropy of a password will depend on the underlying image, and leads to the question: 
Given an image, how can we predict the (conditional) entropy of a click point in that 
image, within the context of PassPoint passwords. 

Based on the Ahmet Emir Dirik et al’s study[8]. They analysed the password secu-
rity of underlying images by computing the entropy of a click point by adding salien-
cy points to the images, and they compared the predictions produced by their model 
with data consisting of roughly 100 actual passwords selected by users. In these (very 
small) images their model was able to predict 70- 80% of the user click positions. The 
results show that their model can be used to evaluate the suitability of an underlying 
image for the PassPoints system.  
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to prevent the following problems by adding haptic feedback to PassPoints as addi-
tional decoy click points. We also conduct an user study to evaluate and compare the 
usability of HapticPoints and PassPoints. 
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the click-points must be in the correct order, and accurate within a system-specified 
tolerance. The image acts as a memory cue to the location of the originally chosen 
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The underlying images of PassPoints for creating a password are not restricted to 
any types of images such as drawings, Perspective photos,  Human face images can 
be used; users can even install their own images. Natural images help users remember 
complex passwords better. This suggests that in a human context, the (conditional) 
entropy of a password will depend on the underlying image, and leads to the question: 
Given an image, how can we predict the (conditional) entropy of a click point in that 
image, within the context of PassPoint passwords. 

Based on the Ahmet Emir Dirik et al’s study[8]. They analysed the password secu-
rity of underlying images by computing the entropy of a click point by adding salien-
cy points to the images, and they compared the predictions produced by their model 
with data consisting of roughly 100 actual passwords selected by users. In these (very 
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Fig. 1. User Interface of PassPoints. 

The 19th World Conference on Information Security Applications

-17-



4.4. Hotspots 

Hotspots[22] are remarkable points or areas of a password image with higher proba-
bility of being chosen by users as password click points. The attacks below target 
PassPoints itself, as opposed to evolved systems like PCCP[23]. 

Success in exploiting hotspots with automated image processing tools has been 
reported (see Fig. 2)[8]. The most efficient hotspot attacks to date [9] harvest from 
different users a small sample of passwords for target images, using the component 
click-points to build “human-seeded” attack dictionaries. One such attack uses a first-
order Markov attack, a second, based on an independent probability model, assumes 
click-points are independent of their predecessors. 

 

Fig. 2  A. Dirik et el. exploited hotspots with automated image processing 

5. HapticPoints 

We propose a graphical password authentication system on smartphones which ex-
tended from PassPoints called “HapticPoints” to enhance and prevent attacks of Pass-
Points which we describe in section 3. In HapticPoints we added haptic feedback ran-
domly after a user click on a password click point to notify users that they need to 
create additional decoy click points.  
 The reason behind adding haptic feedback is when the haptic feedback vibrates, it 
can neither be observed by eyes nor eavesdropped by ears which means attackers may 
not be noticed that which click points are actual click points and which click points 
are decoy points. We generate the number of decoy click points (p) by: 

 decoyPoints = ciel(actualPoints/2) 

4. Threat Model 

Robert Biddle et al[6] elaborates standard threats to password-based authentication 
systems and how they relate to graphical passwords. Based on their study we model 
the threats faced in PassPoints. Attacks are classified as shoulder surfing attacks, brute 
force attacks,  dictionary attacks and hotspots. 

4.1. Shoulder Surfing Attack 

Shoulder-surfing attack is a direct attack focused on the visual aspect of graphical 
passwords. When users are logging in or inputting passwords, attackers may directly 
observe or use external recording devices such as high resolution cameras and sur-
veillance equipments  to collect users’ credentials. 

Several existing graphical password systems tried to prevent from shoulder surfing  
attacks but turns out significant usability drawbacks[24], usually in the time and effort 
required to log in, making them less suitable for daily-usage authentication.  

4.2. Brute Force Attack 

Brute force attack is a trial and error method used to obtain information such as a user 
password by imitating the clicking on a password image. In a brute force attack, au-
tomated software is used to generate a large number of consecutive guesses as to the 
value of the desired data. An attack of this nature can be time and resource consum-
ing. Success is usually based on computing power and the number of combinations 
tried rather than an ingenious algorithm. 

The advantage to do offline brute force attacks is that with enough time and com-
puting power, all passwords will be found. However, full search of large password 
spaces is limited in practice by the time or processing power available.To minimise 
the threat of exhaustive attacks, the theoretical password space should be too large to 
search. 

4.3. Dictionary Attack 

The original idea involved guessing passwords from a relatively short pre-compiled 
list (dictionary) of high probability candidate passwords, based on assumptions about 
user behaviour. Massive dictionaries and powerful data structures have created a con-
tinuum from small dictionaries to prioritised brute force attacks, with smart dictionary 
attacks combining time-memory trade-offs of brute force attacks with higher success 
probabilities of prioritised dictionaries, in some cases algorithmically generated [25]. 

Many users’ uses weak passwords which make it is easier for attackers to guess the 
password using the graphical dictionary attack[7]. 

Previous studies[8, 9] show that users’ choices are predictable in most cued-recall 
based systems, so attackers can make use of this property. Attackers first collect im-
ages used by authentication systems, then processes and analyses the images to obtain 
the hotspots and patterns. 
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are decoy points. We generate the number of decoy click points (p) by: 
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Shoulder-surfing attack is a direct attack focused on the visual aspect of graphical 
passwords. When users are logging in or inputting passwords, attackers may directly 
observe or use external recording devices such as high resolution cameras and sur-
veillance equipments  to collect users’ credentials. 

Several existing graphical password systems tried to prevent from shoulder surfing  
attacks but turns out significant usability drawbacks[24], usually in the time and effort 
required to log in, making them less suitable for daily-usage authentication.  

4.2. Brute Force Attack 

Brute force attack is a trial and error method used to obtain information such as a user 
password by imitating the clicking on a password image. In a brute force attack, au-
tomated software is used to generate a large number of consecutive guesses as to the 
value of the desired data. An attack of this nature can be time and resource consum-
ing. Success is usually based on computing power and the number of combinations 
tried rather than an ingenious algorithm. 

The advantage to do offline brute force attacks is that with enough time and com-
puting power, all passwords will be found. However, full search of large password 
spaces is limited in practice by the time or processing power available.To minimise 
the threat of exhaustive attacks, the theoretical password space should be too large to 
search. 

4.3. Dictionary Attack 

The original idea involved guessing passwords from a relatively short pre-compiled 
list (dictionary) of high probability candidate passwords, based on assumptions about 
user behaviour. Massive dictionaries and powerful data structures have created a con-
tinuum from small dictionaries to prioritised brute force attacks, with smart dictionary 
attacks combining time-memory trade-offs of brute force attacks with higher success 
probabilities of prioritised dictionaries, in some cases algorithmically generated [25]. 

Many users’ uses weak passwords which make it is easier for attackers to guess the 
password using the graphical dictionary attack[7]. 

Previous studies[8, 9] show that users’ choices are predictable in most cued-recall 
based systems, so attackers can make use of this property. Attackers first collect im-
ages used by authentication systems, then processes and analyses the images to obtain 
the hotspots and patterns. 

The 19th World Conference on Information Security Applications

-19-



Fig. 4   Examples of HapticPoints password input. 

5.2. Login Phase 

In login phase, users use passwords created during the registration phase to log into 
HapticPoints (see Fig.4-5). The following is the complete procedure:  

1. User starts clicking the first password click point of a password image. 
2. If the haptic feedback vibrates, user needs to create a decoy click point by click-
ing any area in the password image and If the haptic feedback doesn’t vibrate, user 
needs to click on the actual click point of the current password sequence. 
3. Continue  following Step1 and Step 2 until user finished inputting password. 
4. If users noticed an error during login, they could cancel their login attempt and 
try again in Step 1. 

Fig. 5 HapticPoints login flow 

 In HapticPoints graphical password authentication system, there are two usage 
phases: the registration phase and the login phase. 

5.1. Registration Phase 

The previous study[17]. shows that their model can be used to guide suitable image 
selection for graphical passwords before the user selects their first click point and 
without requiring additional user effort by proposing a measurement for guiding im-
ages that is based on overall image saliency and contents (see Fig.2). They found that 
the more salient regions on an image, the higher the entropy of click points, and thus 
the higher the theoretical and practical password space. 

In the registration phase we let users choose their own images to create passwords 
then we show image saliency by using Deep Gaze[18] algorithm to inform the suit-
ability of the image to prevent dictionary attacks. The following is the complete pro-
cedure:  

1.  User selects his/her password image from the phone, the password image can 
be any types of images. 
2.  The selected password image will be analysed and showed overall image 
saliency (see Fig.3). At this step we will inform user that the more salient regions 
on the image, the stronger password that it could be. 
3.  If user confirms to use the current image as a password, Create a password by 
clicking on the password image in the range from 4 to 6 points in sequence (Simi-
lar to the original PassPoints) 
4. Confirm the password by re-entering it correctly. Users incorrectly confirming 
their password could retry the confirmation or return to Step 3 or Step 1.  

Fig. 3 An example of saliency map 
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Table 2. Login time result (seconds) 

6.3. Recall Success Rate 

In PassPoints scheme, the nature of many recall success rate was down to either for-
getting the password length or clicking points outside the tolerance region. We con-
ducted an experiment to compare recall success rate between PassPoints and Haptic 
Points. We separated the time range of the experiment to two groups which are one 
hour and one week. 

Table compares the recall success rate for one hour test and one week test. From a 
T-test analysis shows that the recall success rate of both HapticPoints is similar to 
PassPoints. 

Table 3. Recall success rate result (seconds) 

6.4. Usability Questionnaire (PSSUQ) 

We conducted user usability experiment by using he Lewis’ Post-Study System Us-
ability Questionnaire (PSSUQ)[20] which contains 19 usability questionnaire items  
perceived usefulness of the scheme in completing the given tasks (SysUse), perceived 
quality of displayed information (InfoQual ) and interface elements (InterQual ). and 
overall satisfaction with the scheme (Overall). Likert scale from  “1” to “7". “1” 
means strongly disagree and “7” means strongly agree. Fig. 6 shows the results for 
each scheme. A T-test found no significant differences between PassPoints and Hap-
ticPoints for any of the scores (t = 0.4412, P = 0.634).  

6. Usability Evaluation 

We developed a prototype  on android operating system as an application and we also 
recruited 20 participants to involve the experiment, these participants (8 female and 
12 male , age 24 - 32) are from the software development company where one of the 
researcher is currently working with. 

 The experiment started with a tutorial phase, in which participants had to enter a 
PassPoints password followed by HapticPoints password on the smartphone. The ap-
plication continued to challenge the participants as soon as both passwords had been 
entered successfully. Then, each participant had to create their own passwords.  

We assessed usability with a combination of quantitative and qualitative metrics. A 
scheme’s efficiency is measured by number of attempts required for successful login 
and the entry time required for a login, effectiveness is assessed with the recall suc-
cess rate. The usability questionnaire provides qualitative data on user satisfaction 
based on participant ratings onLewis’ Post- Study System Usability Questionnaire 
(PSSUQ) to participants[20]. 

6.1. Login Attempts 

Table 1 displays the number of attempts required for successful authentication of each 
graphical. HapticPoints was taken slightly more attempts than PassPoints (PassPoints 
= 1.645 tries, HapticPoints = 1.709 tries and P = 0.759). A T-test analysis for Pass-
Points and HapticPoints password revealed no significant difference.

Table 1. Login attempts result (tries) 

6.2. Login Time 

Table 2 displays the average login time required in a successful authentication of 
PassPoints and HapticPoints, Login time is also no significant difference between 
PassPoints and HapticPoints from a T-test analysis (PassPoints = 8.421 seconds, Hap-
ticPoints = 10.278 seconds, P = 0.0782). 

  

WISA 2018

-22-



Table 2. Login time result (seconds) 

6.3. Recall Success Rate 

In PassPoints scheme, the nature of many recall success rate was down to either for-
getting the password length or clicking points outside the tolerance region. We con-
ducted an experiment to compare recall success rate between PassPoints and Haptic 
Points. We separated the time range of the experiment to two groups which are one 
hour and one week. 

Table compares the recall success rate for one hour test and one week test. From a 
T-test analysis shows that the recall success rate of both HapticPoints is similar to 
PassPoints. 

Table 3. Recall success rate result (seconds) 

6.4. Usability Questionnaire (PSSUQ) 

We conducted user usability experiment by using he Lewis’ Post-Study System Us-
ability Questionnaire (PSSUQ)[20] which contains 19 usability questionnaire items  
perceived usefulness of the scheme in completing the given tasks (SysUse), perceived 
quality of displayed information (InfoQual ) and interface elements (InterQual ). and 
overall satisfaction with the scheme (Overall). Likert scale from  “1” to “7". “1” 
means strongly disagree and “7” means strongly agree. Fig. 6 shows the results for 
each scheme. A T-test found no significant differences between PassPoints and Hap-
ticPoints for any of the scores (t = 0.4412, P = 0.634).  
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participant was 23 years old and the oldest was 44 years old.  
 The shoulder surfing experiment was conducted after the usability experiment. The 
right-handed experimenter sat at a table holding a smartphone as if entering a pass- 
word and the participant could position herself left, right, or behind the experimenter. 
We also limited the number of login attempts for shoulder surfers to 4 times. 

The shoulder surfing result of PassPoints is 12 out of 20 (60%) shoulder surfers 
could crack the password but the result of HapticPoints is 1 out of 20 (5%) shoulder. 

Table 4. The entropy in bits of the original PassPoints compared with HapticPoints. 

7.3. Dictionary Attack and Hotspots 

In general graphical password systems are vulnerable to the threat of dictionary at-
tacks. Attackers can collect the image of PassPoints and perform an automated image 
processing [8] to obtain hotspots and patterns.  However we enhanced an ability  to 
avoid dictionary attacks by adding image saliency [17, 18]. A more complex image 
can provide more possible click points that users actually select, thus potentially en-
couraging the user to create a less guessable password, or at least one that is more 
computationally intensive and time consuming for an attacker. This also has the effect 
of spreading potential user password click points, and thus potential hotspots, over an 
image, which may make dictionary attacks that need to consider all hotspots less fea-
sible.  

8. Limitation 

We can only increase the cost of shoulder surfing attack. If the attacker is able to ob-
serve multiple login sessions then clicking points may be revealed based on the inter-
section and correlation among the observations. HapticPoints is not fully resistant to 
shoulder surfing attack, but still stronger than PassPoints because if PassPoints pass-
words are being screen recorded or observed, attackers could possibly crack pass-
words in only one time. 

Fig. 6  PSSUQ Result.

7. Security Evaluation 

7.1. Brute Force Attack 

We calculate the entropy of haptic points password to quantify the security of haptic 
points against brute force attacks. Entropy means the quantity of information inside 
the password space, i.e., all possible passwords, in bits.  

 We implement a prototype to a smartphone which has 5 inches display size, and 
the number of total tolerance squares is 60 (6 in horizontal and 10 in vertical). Table 4 
shows and compares the calculated password entropy between the original PassPoints 
and HapticPoints. We can find that the password strength of HapticPoints 4 click 
points password is similar to PassPoints 6 click points password which also is equiva-
lent to six-character text password consisting of numbers, lowercase, and uppercase 
characters. From the result, it shows that our proposed scheme is more secure than 
PassPoints in practice against brute force attacks. 

7.2. Shoulder Surfing Attack 

We followed the common approach of having participants act as shoulder surfers [26, 
27, 28, 29]. Participants acted as shoulder surfers and the experimenter acted the vic-
tim. This setup has the advantage that the experimenter could train password entry in 
advance, to ensure consistent entry speed and body posture for all participants. Thus, 
we evaluated a casual observer’s ability to recognise a password entered by a trained 
user, compared to evaluating an expert shoulder surfer with a beginner user in the 
reverse setup. The average age of the participants was 29 years old. The youngest 
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couraging the user to create a less guessable password, or at least one that is more 
computationally intensive and time consuming for an attacker. This also has the effect 
of spreading potential user password click points, and thus potential hotspots, over an 
image, which may make dictionary attacks that need to consider all hotspots less fea-
sible.  

8. Limitation 

We can only increase the cost of shoulder surfing attack. If the attacker is able to ob-
serve multiple login sessions then clicking points may be revealed based on the inter-
section and correlation among the observations. HapticPoints is not fully resistant to 
shoulder surfing attack, but still stronger than PassPoints because if PassPoints pass-
words are being screen recorded or observed, attackers could possibly crack pass-
words in only one time. 
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9. Conclusion 

In order to solve the security problems of PassPoints (shoulder surfing attack, brute 
force attack and dictionary attack), we propose a PassPoints based graphical-pass-
word authentication system called HapticPoints. By adding haptic feedback to create 
decoy click points and a sequence of 4-6 click-points that user selects in the password 
image. We implemented a prototype as an android application of HapticPoints and 
conducted a user study. The experiment results shows that the password becomes 
stronger and be able to prevent the attacks while the usability is slightly decreased. 

HapticPoints provides 47 bits entropy (with 5 click points) against brute force at-
tacks which is higher than PassPoints (29 bits). Moreover, we enhanced an ability to 
prevent dictionary attacks by adding image saliency at the registration phase to inform 
the suitability of the user’s password image. 
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system such as ventricular assist system, anomaly detection system must get
less latency. Although there are many types of researches based on deep learning
recently, deep learning approaches are not suitable to process data in real-time
that changes frequently or has large data since it takes a lot of time to build a
model compared to other algorithms.

The critical conditions of anomaly detection system for IoT devices or cloud
network intrusion detection are as follows. First is accuracy, second is speed,
third is the small size of the model and the last is domain universality [2, 19]. We
propose ADSaS, anomaly detection system using SARIMA and STL, to meet the
four conditions. SARIMA is conventional time-series forecast method, and STL
is a versatile and robust method for time-series decomposition. Aforementioned
methods are commonly used for stationary and periodic time-series data [7]. In
our experiments, however, integrating two methods shows better performance
not only for periodic data but also for non-periodic data. Moreover, the size
of the model and speed are optimized by undersampling and interpolation. For
accuracy, we defined an anomaly window for evaluation and then judged how
well ADSaS finds anomalies in various datasets.

The contributions of our system are as follows:

– Regardless of time-series properties, ADSaS detects anomalies with high
precision and recall. We verify this by using the time-series from a variety
of sources. With the development of Cyber-Physical Systems (CPS) or IoT
devices, anomaly detection systems must detect anomaly autonomously and
generically for applications.

– ADSaS detects various types of anomaly. (i.e., peak, dip, concept drift, con-
textual anomalies, and collective anomalies)

– ADSaS detects anomalies with short latency. We use two conventional time-
series analysis methods and advance performance by undersampling. By un-
dersampling time-series, time-series model is built much faster. Though un-
dersampling causes loss of data, STL recovers that loss by decomposing
prediction errors.

– ADSaS proceeds anomaly detection in real-time for every data stream.

2 Related works

In particular, there have been studies such as automotive IDS [8], SCADA,
control network [18] to detect anomalies for mission-critical and safety-critical
systems. It is important to develop anomaly detection algorithm robustly for the
efficiency of intrusion detection in a modern network environment such as cloud
computing [9]. Anomaly detection in time-series is roughly divided to clustering-
based approach [11, 12] and forecast-based approach. Most of the forecast-based
approaches perform anomaly detection based on the error with the predicted
value.

Several machine learning techniques were introduced so far for anomaly de-
tection system. LSTM network has been demonstrated to be particularly useful
for anomaly detection in time-series [13]. Jonathan et al. [6] also presented a

ADSaS: Comprehensive Real-time Anomaly
Detection System by Using SARIMA and STL

Sooyeon Lee and Huy Kang Kim

Graduate School of Information Security, Korea University
{tndus95a,cenda}@korea.ac.kr

Abstract. Since with massive data growth, the need for autonomous
and generic anomaly detection system is increased. However, developing
one stand-alone generic anomaly detection system that is accurate and
fast is still a challenge. In this paper, we propose conventional time-series
analysis approaches, the Seasonal Autoregressive Integrated Moving Av-
erage (SARIMA) model and Seasonal Trend decomposition using Loess
(STL), to detect complex and various anomalies. Usually, SARIMA and
STL are used only for stationary and periodic time-series, but by com-
bining, we show they can detect anomalies with high accuracy for data
that is even noisy and non-periodic. We compared the algorithm to Long
Short Term Memory (LSTM), a deep-learning-based algorithm used for
anomaly detection system. We used a total of seven real-world datasets
and four artificial datasets with different time-series properties to verify
the performance of the proposed algorithm.

Keywords: anomaly detection · SARIMA · STL · real-time · data stream

1 Introduction

Extremely vast data leads to severe challenges to a security administrator who
should catch all the anomalies in real-time. Anomaly detection cannot be re-
garded as a human-work anymore. To automate the anomaly detection process,
machine-learning-based and statistics-based anomaly detection have been re-
searched within diverse research areas including network intrusion detection,
fraud detection, medical diagnoses, sensor events and others. Despite the variety
of such studies in recent years, most anomaly detection systems find anomalies
in limited conditions. This is because not only a variety of attacks but also mul-
tiple sensors in a single device generate a different type of time-series. In the
case of IoT devices, which are embedded with multiple sensors, it is inefficient to
use independent anomaly detection algorithms to each different sensor. Anomaly
detection systems that are resistant to various datasets should detect anomalies
autonomously irrespectively of the time-series properties.

Also, the anomaly detection system should occupy as little memory as pos-
sible. Most of deep learning based anomaly detection systems are generally un-
suitable for an environment such as IoT devices because of the limited memory
and light capacity. As most anomalies cause a critical problem to the medical
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system such as ventricular assist system, anomaly detection system must get
less latency. Although there are many types of researches based on deep learning
recently, deep learning approaches are not suitable to process data in real-time
that changes frequently or has large data since it takes a lot of time to build a
model compared to other algorithms.

The critical conditions of anomaly detection system for IoT devices or cloud
network intrusion detection are as follows. First is accuracy, second is speed,
third is the small size of the model and the last is domain universality [2, 19]. We
propose ADSaS, anomaly detection system using SARIMA and STL, to meet the
four conditions. SARIMA is conventional time-series forecast method, and STL
is a versatile and robust method for time-series decomposition. Aforementioned
methods are commonly used for stationary and periodic time-series data [7]. In
our experiments, however, integrating two methods shows better performance
not only for periodic data but also for non-periodic data. Moreover, the size
of the model and speed are optimized by undersampling and interpolation. For
accuracy, we defined an anomaly window for evaluation and then judged how
well ADSaS finds anomalies in various datasets.

The contributions of our system are as follows:

– Regardless of time-series properties, ADSaS detects anomalies with high
precision and recall. We verify this by using the time-series from a variety
of sources. With the development of Cyber-Physical Systems (CPS) or IoT
devices, anomaly detection systems must detect anomaly autonomously and
generically for applications.

– ADSaS detects various types of anomaly. (i.e., peak, dip, concept drift, con-
textual anomalies, and collective anomalies)

– ADSaS detects anomalies with short latency. We use two conventional time-
series analysis methods and advance performance by undersampling. By un-
dersampling time-series, time-series model is built much faster. Though un-
dersampling causes loss of data, STL recovers that loss by decomposing
prediction errors.

– ADSaS proceeds anomaly detection in real-time for every data stream.

2 Related works

In particular, there have been studies such as automotive IDS [8], SCADA,
control network [18] to detect anomalies for mission-critical and safety-critical
systems. It is important to develop anomaly detection algorithm robustly for the
efficiency of intrusion detection in a modern network environment such as cloud
computing [9]. Anomaly detection in time-series is roughly divided to clustering-
based approach [11, 12] and forecast-based approach. Most of the forecast-based
approaches perform anomaly detection based on the error with the predicted
value.

Several machine learning techniques were introduced so far for anomaly de-
tection system. LSTM network has been demonstrated to be particularly useful
for anomaly detection in time-series [13]. Jonathan et al. [6] also presented a

The 19th World Conference on Information Security Applications

-29-



4 S. Lee and H.K. Kim

data has white noise αt, autoregressive parameter φ, an AR(p) model Zt at time
t is defined as:

Zt = φ1Zt−1 + φ2Zt−2 + · · ·+ φpZt−p + αt (1)

Moving Average (MA) Model MA model is used complicated stochastic
structure to model time-series [14]. When time-series has white noise αt, param-
eters of the model θ, a MA(q) model Zt at time t is defined as:

Zt = αt − θ1αt−1 − · · · − θqαt−q (2)

ARIMA ARIMA model generalizes an ARMA model (AR+MA) by replac-
ing the difference among previous values. An ARMA model is applicable only
for stationary time-series, ARIMA is applicable for non-stationary time-series.
ARMA(p, q) model is given by:

Zt − φ1Zt−1 − · · · − φpZt−p = αt + θ1αt−1 + · · · − θqαt−q (3)
(
1−

p∑
i=1

φiL
i

)
Zt =

(
1 +

q∑
i=1

θiL
i

)
αt (4)

In here, L is the lag operator of Z. ARIMA(p, d, q) model has parameters
p (the order of AR model), q (the order of MA model) and also d (the degree
of differencing). When two out of the three parameters are zeros, the model is
referred to as AR or MA or I. (i.e., ARIMA(1,0,0) is AR(1)) ARIMA(p, d, q)
model is defined as:

(
1−

p∑
i=1

φiL
i

)
(1− L)dZt =

(
1 +

q∑
i=1

αiL
i

)
αt (5)

SARIMA SARIMA is a much more efficient model to express time-series with
seasonality than ARIMA model. It has an additional parameter seasonal order
called s. SARIMA is defined as SARIMA(p, d, q)(P,D,Q)s. The parameters
p, d, q are for non-seasonal part of the time-series, and P,D,Q are for seasonal
part of the model. In other words, SARIMA creates models with both seasonal
and non-seasonal data. For s = 12, SARIMA builds a time-series model with
seasonality per 12 data points.

4 Methodology

ADSaS ADSaS consists of three modules, dataset analysis module, forecasting
module and error processing module. Let the vector xt is the value of a sys-
tem at time t. Real-time anomaly detection system should classify whether the
value is an anomaly or not without using any data after the time t. First of all,

ADSaS: Comprehensive Real-time Anomaly Detection System 3

novel anomaly detection system to detect cyber attacks in CPS by using unsu-
pervised learning approach, Recurrent Neural Network (RNN). Sucheta et al. [3]
applied RNN and LSTM to detect anomalies in ECG signals. They used only a
single data source, so did not show the generality of algorithms.

Some studies used diverse dataset sources to evaluate anomaly detection al-
gorithm. Numenta used Hierarchical Temporal Memory (HTM) algorithm to
detect anomaly detection capable for stream time-series [2]. HTM is a neural
network, and every neuron in HTM remember and predict the value by com-
municating with each other. Since it is composed of a higher order than other
neural networks, it may not be suitable for anomaly detection systems which re-
quire high speed. Yahoo suggested EGADS [10], plug-in-out anomaly detection
framework, and they indicated that it is essential to use time-series features for
anomaly detection. EGADS offers AR, MA, and ARIMA. Several studies [17]
used ARIMA models to forecast time-series, but they did not process errors
for a non-periodic dataset. SARIMA was also frequently used for time series
prediction, but it was not applied to anomaly detection system [16].

3 Backgrounds

3.1 Time-series analysis

Power Spectral Density Power spectral density is a simple but powerful
method to find the frequency of the data [15]. Power spectral density of the signal
(time-series data) describes the distribution of power which refers to frequency.
Power spectral density graph shows clear peaks when the signal has evident
frequencies.

Dickey-Fuller Test Dickey-Fuller Test tests the null hypothesis that a unit
root is present in an autoregressive model [5]. The unit root test is carried out
under the null hypothesis test value γ = 0 against the alternative hypothesis of
γ < 0. The unit root test is an analytical method for determining stationarity
of the time-series. In ADSaS, when the p-value of the test is bigger than 0.0005,
we reject the hypothesis and refer the time-series as non-stationary data.

STL STL is an algorithm developed to decompose a time-series into three com-
ponents namely: the trend, seasonality, and residuals (remainder) [4]. A trend
shows a persistent increasing or decreasing direction in data, seasonality shows
seasonal factors over a fixed period, and residuals mean noise of the time-series.
For time-series analysis, residuals mainly considered as errors. In this paper, we
use residuals of time-series to extract errors that are related to anomalies.

3.2 Time-series forecast model

Autoregressive (AR) Model AR model is used when a value from a time-
series is regressed on previous values from the same time-series. When time-series
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data has white noise αt, autoregressive parameter φ, an AR(p) model Zt at time
t is defined as:

Zt = φ1Zt−1 + φ2Zt−2 + · · ·+ φpZt−p + αt (1)

Moving Average (MA) Model MA model is used complicated stochastic
structure to model time-series [14]. When time-series has white noise αt, param-
eters of the model θ, a MA(q) model Zt at time t is defined as:

Zt = αt − θ1αt−1 − · · · − θqαt−q (2)

ARIMA ARIMA model generalizes an ARMA model (AR+MA) by replac-
ing the difference among previous values. An ARMA model is applicable only
for stationary time-series, ARIMA is applicable for non-stationary time-series.
ARMA(p, q) model is given by:

Zt − φ1Zt−1 − · · · − φpZt−p = αt + θ1αt−1 + · · · − θqαt−q (3)
(
1−

p∑
i=1

φiL
i

)
Zt =

(
1 +

q∑
i=1

θiL
i

)
αt (4)

In here, L is the lag operator of Z. ARIMA(p, d, q) model has parameters
p (the order of AR model), q (the order of MA model) and also d (the degree
of differencing). When two out of the three parameters are zeros, the model is
referred to as AR or MA or I. (i.e., ARIMA(1,0,0) is AR(1)) ARIMA(p, d, q)
model is defined as:

(
1−

p∑
i=1

φiL
i

)
(1− L)dZt =

(
1 +

q∑
i=1

αiL
i

)
αt (5)

SARIMA SARIMA is a much more efficient model to express time-series with
seasonality than ARIMA model. It has an additional parameter seasonal order
called s. SARIMA is defined as SARIMA(p, d, q)(P,D,Q)s. The parameters
p, d, q are for non-seasonal part of the time-series, and P,D,Q are for seasonal
part of the model. In other words, SARIMA creates models with both seasonal
and non-seasonal data. For s = 12, SARIMA builds a time-series model with
seasonality per 12 data points.

4 Methodology

ADSaS ADSaS consists of three modules, dataset analysis module, forecasting
module and error processing module. Let the vector xt is the value of a sys-
tem at time t. Real-time anomaly detection system should classify whether the
value is an anomaly or not without using any data after the time t. First of all,
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Fig. 2: Observed value, predicted value, prediction error, and residuals of error
for the given time series data.

Error processing module In the error processing module, prediction errors
are decomposed by STL and the residuals are calculated. Although undersam-
pling and interpolation arise a serious problem of missing actual data points,
regularity of the errors due to lost data points diminishes the residuals. We
model the residuals distribution as a rolling normal distribution, though the dis-
tribution of prediction errors is not technically a normal distribution. Where the
sample mean µ , and variance σ2 are given, the cumulative distribution function
is calculated as follows:

F (x) =

∫ x

−∞

e−
(x−µ)2

2σ2

σ
√
2π

dx (6)

We threshold F (rt) based on a user-defined parameter ε to alert anomalies1. If
F (rt) is smaller than ε or greater than 1− ε, it is determined as anomaly.

Fig. 2 is an example of error residuals2 The error increment is occurred in the
normal data (first jump) due to the undersampling and interpolation. However, it
is judged to be a regular error by STL, so decomposed to trend or seasonality, no
residuals. As the anomaly occurs, the residuals decreases/increases sharply. This
causes the dramatic difference in residuals between regular errors and unexpected
errors, so anomalies are detected by ADSaS easily.

1 We used ε = 0.0005 for experiments.
2 Anomalies are colored with red.
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by analyzing the proper size of the train set, dataset analysis module finds the
frequency and stationarity of the given dataset. Then, forecasting module fore-
casts xt+1, xt+2, xt+3,. . . by using train set (The size of forecast can be changed).
When data stream xt+1 comes, error processing module calculates the residuals
of the error and the cumulative probability of the residuals. If the cumulative
probability is less or bigger then the threshold, ADSaS classifies the value as an
anomaly and alert. For more accurate forecast model, only the normal value is
fed back to the train set.

Data analysis module STL and SARIMA, mainly used algorithms, work
based on the properties of the time-series data. To get the properties, we use
Dickey-Fuller test for stationarity and power density spectra for frequency. When
data does not have stationarity, we use one day for default frequency.

Train 
set

undersampling SARIMA

Data stream

Interpolation
 STL with 

error

Anomaly 
detection

Error 
setxt

pt

xt

e  , rt t et

X X′ P

E

Forecasting and Error Processing

ct 1−�
ct ≦  �≧

Fig. 1: The figure shows how the forecasting module and error processing module
works.

Forecasting module SARIMA model has a s parameter that represents the
seasonality frequency. If a time-series has regular change per one second and
repeats every day, s should be at least 86400 to define time-series model. How-
ever, large s causes a huge amount of time, which is problematic for practical
anomaly detection systems. The ADSaS uses undersampling and interpolation
to shorten building time. Fig. 1 is details about how the prediction and error
processing works. First, we undersample the train set X to X ′(|X| � |X ′|).
If the dataset is recorded at the five-minute interval, we adjust it at the one-
hour interval by averaging them. Then, SARIMA model for train set is built to
describe and forecast time-series. The interval of the model is one-hour, so we
interpolate forecasts at the initial interval (in this case, five-minute) by using
cubic spline interpolation. Where the predicted value is pt and real value is xt,
absolute prediction error et is defined as pt − xt.
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Fig. 2: Observed value, predicted value, prediction error, and residuals of error
for the given time series data.

Error processing module In the error processing module, prediction errors
are decomposed by STL and the residuals are calculated. Although undersam-
pling and interpolation arise a serious problem of missing actual data points,
regularity of the errors due to lost data points diminishes the residuals. We
model the residuals distribution as a rolling normal distribution, though the dis-
tribution of prediction errors is not technically a normal distribution. Where the
sample mean µ , and variance σ2 are given, the cumulative distribution function
is calculated as follows:

F (x) =

∫ x

−∞

e−
(x−µ)2

2σ2

σ
√
2π

dx (6)

We threshold F (rt) based on a user-defined parameter ε to alert anomalies1. If
F (rt) is smaller than ε or greater than 1− ε, it is determined as anomaly.

Fig. 2 is an example of error residuals2 The error increment is occurred in the
normal data (first jump) due to the undersampling and interpolation. However, it
is judged to be a regular error by STL, so decomposed to trend or seasonality, no
residuals. As the anomaly occurs, the residuals decreases/increases sharply. This
causes the dramatic difference in residuals between regular errors and unexpected
errors, so anomalies are detected by ADSaS easily.

1 We used ε = 0.0005 for experiments.
2 Anomalies are colored with red.
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5.2 Evaluation Metrics

We use precision, recall and F1-score to evaluate the algorithm. When the actual
anomaly is classified as an anomaly, it is true positive. False positive is when the
normal data is classified to be an anomaly. False negative is when the anomaly
is classified as normal, and true negative is when the normal data is classified
as normal. Depending on the area, false positive may be more important than
false negative to check performance or vice versa. We use F1-score to evaluate
both precision( TP

TP+FP ), which is an indicator of whether the anomalies detected

by the algorithm is trusty and recall( TP
TP+FN ), which is an indicator of how

many anomalies are detected by the algorithm. The metric of F1-score is 2 ×
Precision×Recall
Precision+Recall .

Anomaly window We also define anomaly window to evaluate the performance
of the algorithm. An anomaly may occur only at a certain point (peak, dip), but
it may occur over a long period. It is not false positive to detect anomaly at the
point immediately before or after the occurrence of an anomaly. It is essential
to set the appropriate anomaly windows covering anomalies. Numenta defines
their own anomaly windows for NAB dataset, but it is too large to distinguish
whether the classification is right or wrong. We use small enough window size
to prevent inept detection considered as true positive or true negative. In the
case of anomalies occurring over a long period, it can be judged as a section
composed of several anomaly windows. If the anomaly window is successfully
detected in section, it is considered to be true positive after the detection.

6 Results

Table 1 shows the comparisons of precision, recall and F1-score for algorithms
from different kinds of sources. It shows that ADSaS yields the best overall
datasets except one, NAB CPU. For NAB CPU, the algorithm that uses only
LSTM shows the best result. LSTM algorithm, however, is a deep learning based
algorithm that takes a lot of time to learn. In addition, for data such as NAB
Jumps and P Login, which has periodicity and stationary, LSTM shows low-
est F1-score than other algorithms. Even LSTM with STL, F1-score is slightly
increased in periodic time-series, but it is decreased by about half in case of
non-periodic data (NAB CPU).

We note that in most datasets, an algorithm that uses only STL has the next
highest F1-score after ADSaS. In particular, as opposed to LSTM, it performed
well for NAB Jumps and P Login which are periodic time-series. However, STL
does not forecast anything, so it is impossible to automatically correct anomalies
to normal values, which is possible in other algorithms. SARIMA only algorithm
does not perform well in anomaly detection because its forecast accuracy is
compromised by the undersampling and interpolation processes. For NAB disks,
which is the noisiest dataset, all but ADSaS has very low F1-score less than 0.05.

ADSaS: Comprehensive Real-time Anomaly Detection System 7

5 Experimental Evaluation

5.1 Dataset

There are 11 datasets we used in the experiment, eight datasets from Numenta
Anomaly Benchmark (NAB) [1] and three datasets from the P corporation,
Korea’s leading third-party online payment solution. NAB is a benchmark for
evaluating anomaly detection algorithms, and it is comprised of over 50 labeled
artificial and real-world datasets. Also, the real-world datasets from P are user
login statistics, tracks the browser, service provider and login result status. The
anomalies are labeled when the real attack attempts are held. All the anomalies
were confirmed by P corporation.

All datasets except four datasets (NAB artificial jump datasets) are real-
world datasets, which cover various fields, including CPU utilization, machine
temperature, and user login statistics. The examples of datasets are shown in
Fig. 3. Each dataset has different time series characteristics and anomaly types.
For instance, dataset (b) has concept drift anomaly that it should not be detected
as anomaly after the drift point. Dataset (c) disk write anomaly has lots of noises.
NYC taxi dataset shows various anomalies (peak, dip and partial decrease).

Fig. 3: The examples of the datasets.
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5.2 Evaluation Metrics

We use precision, recall and F1-score to evaluate the algorithm. When the actual
anomaly is classified as an anomaly, it is true positive. False positive is when the
normal data is classified to be an anomaly. False negative is when the anomaly
is classified as normal, and true negative is when the normal data is classified
as normal. Depending on the area, false positive may be more important than
false negative to check performance or vice versa. We use F1-score to evaluate
both precision( TP

TP+FP ), which is an indicator of whether the anomalies detected

by the algorithm is trusty and recall( TP
TP+FN ), which is an indicator of how

many anomalies are detected by the algorithm. The metric of F1-score is 2 ×
Precision×Recall
Precision+Recall .

Anomaly window We also define anomaly window to evaluate the performance
of the algorithm. An anomaly may occur only at a certain point (peak, dip), but
it may occur over a long period. It is not false positive to detect anomaly at the
point immediately before or after the occurrence of an anomaly. It is essential
to set the appropriate anomaly windows covering anomalies. Numenta defines
their own anomaly windows for NAB dataset, but it is too large to distinguish
whether the classification is right or wrong. We use small enough window size
to prevent inept detection considered as true positive or true negative. In the
case of anomalies occurring over a long period, it can be judged as a section
composed of several anomaly windows. If the anomaly window is successfully
detected in section, it is considered to be true positive after the detection.

6 Results

Table 1 shows the comparisons of precision, recall and F1-score for algorithms
from different kinds of sources. It shows that ADSaS yields the best overall
datasets except one, NAB CPU. For NAB CPU, the algorithm that uses only
LSTM shows the best result. LSTM algorithm, however, is a deep learning based
algorithm that takes a lot of time to learn. In addition, for data such as NAB
Jumps and P Login, which has periodicity and stationary, LSTM shows low-
est F1-score than other algorithms. Even LSTM with STL, F1-score is slightly
increased in periodic time-series, but it is decreased by about half in case of
non-periodic data (NAB CPU).

We note that in most datasets, an algorithm that uses only STL has the next
highest F1-score after ADSaS. In particular, as opposed to LSTM, it performed
well for NAB Jumps and P Login which are periodic time-series. However, STL
does not forecast anything, so it is impossible to automatically correct anomalies
to normal values, which is possible in other algorithms. SARIMA only algorithm
does not perform well in anomaly detection because its forecast accuracy is
compromised by the undersampling and interpolation processes. For NAB disks,
which is the noisiest dataset, all but ADSaS has very low F1-score less than 0.05.
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partial decrease), and a total number of anomaly windows is nine. First, ADSaS
and STL have some similar forms but STL shows some bumps between the
fourth and fifth anomaly sections which cause false positives. SARIMA generates
a lot of errors regularly due to its uncertainty of forecasting. LSTM shows the
lowest prediction error compared to other algorithms, but the prediction error
is increased only at the point where peaks exist. For dip and partial decrease,
where the value is suddenly reduced, the prediction error is low because LSTM
quickly adjusts to the value.

Fig. 4: Residuals or error of each algorithm for NAB taxi dataset. Anomaly
windows are colored with red.

Table 2: The latency of classification for each stream and model-build.
Algorithm Model build(s) classify(s)

STL 0.000 0.189
SARIMA 3.776 0.000
LSTM 1982.410 0.001
ADSaS 3.992 0.187

Table 2 is a comparison of latency between algorithms. STL does not need to
build a model, so only time-decomposition process increases latency. Unlike other

ADSaS: Comprehensive Real-time Anomaly Detection System 9

This suggests that SARIMA, STL, and LSTM cannot handle noise alone, but
combining SARIMA and STL shows remarkable performance at handling noise.

We also analyze the reasons why ADSaS performed poorly on NAB CPU
dataset. ADSaS found only one of the four anomaly windows, which is the last
anomaly window, the actual concept drift. ADSaS is unable to determine the
first anomaly whether or not it is an anomaly because it is used as train set.
This is a fatal disadvantage of ADSaS. Both SARIMA and STL require a data
set of a certain size to be used as a train set to forecast or decompose time-
series. ADSaS uses both algorithms, so the amount of data sets initially used for
training is greater than others. However, since there are large enough datasets
for anomaly detection in real business, this is not a big problem to ADSaS. In
addition, ADSaS shows near-perfect accuracy for most datasets.

Table 1: Comparison of results between algorithms.

Dataset
Total

Window
Anomaly
Window

Metrics
STL
only

SARIMA
only

LSTM
only

LSTM
with
STL

ADSaS

NAB Jumps 335 11-25
Precision 0.920 0.518 0.324 0.278 1.000

Recall 0.910 0.727 0.500 0.750 1.000
F1-score 0.903 0.583 0.370 0.392 1.000

NAB CPU 335 4
Precision 0.800 0.143 0.833 0.308 1.000

Recall 1.000 0.250 1.000 1.000 0.250
F1-score 0.889 0.182 0.909 0.471 0.400

NAB Disk 394 1
Precision 0.025 0.026 0.049 0.018 1.000

Recall 1.000 1.000 0.222 1.000 1.000
F1-score 0.049 0.051 0.049 0.018 1.000

NAB
Temperature

315 9
Precision 0.250 0.000 0.049 0.059 1.000

Recall 0.222 0.000 0.222 0.625 0.500
F1-score 0.235 0.000 0.080 0.108 0.667

NAB Taxi 214 9
Precision 0.533 0.000 0.176 0.161 1.000

Recall 0.889 0.000 0.333 1.000 1.000
F1-score 0.667 0.000 0.231 0.277 1.000

P Login 1,102 245
Precision 0.970 1.000 0.962 0.968 1.000

Recall 0.922 0.307 0.307 1.000 1.000
F1-score 0.945 0.470 0.466 0.984 1.000

P Browser 1,102 131
Precision 0.947 1.000 1.000 0.942 1.000

Recall 0.954 0.588 0.924 0.992 1.000
F1-score 0.951 0.740 0.960 0.967 1.000

P Provider 1,102 141
Precision 0.914 1.000 0.917 0.849 1.000

Recall 0.979 0.057 0.936 1.000 0.993
F1-score 0.945 0.107 0.926 0.919 0.996

Fig. 4 shows examples of the residuals and errors from each algorithm in
NAB taxi dataset. The anomaly is determined by the cumulative distribution
function of these data. There are five anomaly sections (including peak, dip,
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partial decrease), and a total number of anomaly windows is nine. First, ADSaS
and STL have some similar forms but STL shows some bumps between the
fourth and fifth anomaly sections which cause false positives. SARIMA generates
a lot of errors regularly due to its uncertainty of forecasting. LSTM shows the
lowest prediction error compared to other algorithms, but the prediction error
is increased only at the point where peaks exist. For dip and partial decrease,
where the value is suddenly reduced, the prediction error is low because LSTM
quickly adjusts to the value.

Fig. 4: Residuals or error of each algorithm for NAB taxi dataset. Anomaly
windows are colored with red.

Table 2: The latency of classification for each stream and model-build.
Algorithm Model build(s) classify(s)

STL 0.000 0.189
SARIMA 3.776 0.000
LSTM 1982.410 0.001
ADSaS 3.992 0.187

Table 2 is a comparison of latency between algorithms. STL does not need to
build a model, so only time-decomposition process increases latency. Unlike other
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tional Conference on. pp. 205–209. IEEE (2010)
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(CIT), 2016 IEEE International Conference on. pp. 234–240. IEEE (2016)
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algorithms, the time decomposition of STL is directly linked to anomaly detec-
tion and cannot proceed with batch. For SARIMA, the forecast size can be ad-
justed to help speed up the forecasting. In this experiment, SARIMA model pre-
dicts the daily data in advance. Therefore, anomaly classification using SARIMA
is very fast because all it has to do is calculate the actual stream data differ-
ence. Although we used the LSTM model with 12 neurons, two hidden layer and
relu activation function in this experiment, which is comparatively not a heavy
model, LSTM took the 1982 seconds to build the model. As the number of neu-
rons and hidden layers increases, building or updating LSTM’s model takes an
extraordinary amount of time.

7 Conclusions

By combining STL and SARIMA, we have presented algorithms to detect var-
ious anomalies in datasets from various sources. In addition, comparing with
LSTM shows that conventional time-series analysis has better performance and
accuracy than the deep-learning algorithm. In this paper, we have discussed
the forecasting model SARIMA does not give accurate predictions, but STL is
able to resolve incomplete predictions by decomposing the prediction errors. It
supports the fact that the STL algorithm will be more useful in anomaly de-
tection than other approaches in error processing, such as likelihood. We also
showed that the conventional time-series techniques are applicable to noisy and
non-stationary datasets (NAB Disk). We applied our algorithm to real online
payment system data and showed that ADSaS can be applied directly to the
real industry. ADSaS succeeded in detecting anomaly right at the time of the
attack. In this experiment, only the SARIMA model is used as the time-series
prediction algorithm, but other time-series models including GARCH model,
that expresses white noises, can be used as a predictor module. Furthermore,
we need to update our algorithms to detect anomaly using multivariate datasets
because we conducted the experiments on datasets with an only single variable.
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In recent years, one-pixel adversarial attacks [14] have emerged as a threat
to DNNs. Unlike conventional adversarial attacks, this method causes DNN mis-
classification by modifying a single pixel and is useful for applications such as
stickers. However, this method has not been considered for situations such as
military scenarios, where enemy forces and friendly forces are mixed.

The adversarial example of friendly forces can be useful in situations such
as military engagements. Because battlegrounds are shared by enemy forces and
friendly forces, friend-safe adversarial examples [9] that can be misclassified by
enemy classifiers and correctly classified by friendly classifiers could prove to be
an invaluable tool. For example, it may be necessary to modify the road signs
on a battlefield to deceive only the enemy’s self-driven vehicles.

Thus, we propose an advanced one-pixel adversarial example that preserves
the recognition of friendly classifiers. By modifying only one pixel, the proposed
method can generate a one-pixel-safe adversarial example that can be misclassi-
fied by enemy classifiers and correctly classified by friendly classifiers. This paper
makes the following contributions:

– First, we propose a one-pixel-safe adversarial example by modifying a single
pixel in a DNN and systematically organize the frameworks of the proposed
scheme.

– The proposed scheme has two configurations: targeted and untargeted at-
tacks. The proposed method can generate the one-pixel-safe adversarial ex-
ample in for both configurations.

– We used the CIFAR-10 dataset to validate the performance and analyze the
success rates for targeted attack and untargeted attacks. In addition, we
analyzed the performance of this method by modifying groups of three and
five pixels.

The remainder of this paper is structured as follows: Section 2 reviews re-
lated works. Our proposed adversarial example attack is presented in Section
3. The experiments and evaluation are shown in Section 4, and a discussion of
the proposed system is presented in Section 5. Finally, conclusions are given in
Section 6.

2 Related works

The study of adversarial examples was introduced by Szegedy et al. [15] in
2014. The main goal of using an adversarial example is to induce the DNN into
making a mistake by adding a small amount of noise to the original image such
that humans cannot tell the difference between the original and the distorted
image.

The basic method for generating adversarial examples is described in Section
2.1. Adversarial examples can be categorized in three ways: recognition of an
adversarial example, information on the target model information, and method
for generation, as described in Sections 2.2–2.4.

One-Pixel Adversarial Example that is Safe for
Friendly Deep Neural Networks

Hyun Kwon∗, Yongchul Kim†, Hyunsoo Yoon∗, and Daeseon Choi§

∗School of Computing, Korea Advanced Institute of Science and Technology
†Department of Electrical Engineering, Korea Military Academy
§Department of Medical Information, Kongju National University

Abstract. Deep neural networks (DNNs) offer superior performance in
machine learning tasks such as image recognition, speech recognition,
pattern analysis, and intrusion detection. These adversarial examples
are a serious threat to DNN, and a lot of reserach is underway. In some
situation, such as military, the adversarial example can be useful. A
friend-safe adversarial example is needed that can be misclassified by an
enemy classifier and correctly classified by a friendly classifier. In this pa-
per, we propose a one-pixel adversarial example that is safe for friendly
deep neural networks. By modifying only one pixel, our proposed method
generates a one-pixel-safe adversarial example that can be misclassified
by an enemy classifier and correctly classified by a friendly classifier.
To produce such examples, a transformation is carried out to minimize
the probability of incorrect classification by the friend and that of correct
classification by the adversary. To verify the performance of the proposed
method, we used the CIFAR-10 dataset, ResNet model classifiers, and
the Tensorflow library in our experiments. Results show that the pro-
posed method modified only one pixel to achieve success rates of 13.5%
and 26.0% in targeted and untargeted attacks, respectively. The success
rate is slightly lower than that of the conventional one-pixel method,
which has success rates of 15% and 33.5% in targeted and untargeted
attacks, respectively; however, this method protects 100% of the friendly
classifiers. In addition, if the proposed method modifies five pixels, this
method can achieve success rates of 20.5% and 52.0% in targeted and
untargeted attacks, respectively.

Keywords: Deep neural network (DNN) · Adversarial example · One-
pixel attack · Differential evolution (DE)

1 Introduction

Deep neural networks (DNNs) [12] have been widely used for image recognition,
speech recognition, pattern analysis, and intrusion detection. However, adver-
sarial examples [15] are a serious threat to DNNs. An adversarial example is a
distorted sample that adds a small amount of noise to the original sample; this
can lead to misclassification of the DNN. Adversarial examples and their effects
have been extensively studied.
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In recent years, one-pixel adversarial attacks [14] have emerged as a threat
to DNNs. Unlike conventional adversarial attacks, this method causes DNN mis-
classification by modifying a single pixel and is useful for applications such as
stickers. However, this method has not been considered for situations such as
military scenarios, where enemy forces and friendly forces are mixed.

The adversarial example of friendly forces can be useful in situations such
as military engagements. Because battlegrounds are shared by enemy forces and
friendly forces, friend-safe adversarial examples [9] that can be misclassified by
enemy classifiers and correctly classified by friendly classifiers could prove to be
an invaluable tool. For example, it may be necessary to modify the road signs
on a battlefield to deceive only the enemy’s self-driven vehicles.

Thus, we propose an advanced one-pixel adversarial example that preserves
the recognition of friendly classifiers. By modifying only one pixel, the proposed
method can generate a one-pixel-safe adversarial example that can be misclassi-
fied by enemy classifiers and correctly classified by friendly classifiers. This paper
makes the following contributions:

– First, we propose a one-pixel-safe adversarial example by modifying a single
pixel in a DNN and systematically organize the frameworks of the proposed
scheme.

– The proposed scheme has two configurations: targeted and untargeted at-
tacks. The proposed method can generate the one-pixel-safe adversarial ex-
ample in for both configurations.

– We used the CIFAR-10 dataset to validate the performance and analyze the
success rates for targeted attack and untargeted attacks. In addition, we
analyzed the performance of this method by modifying groups of three and
five pixels.

The remainder of this paper is structured as follows: Section 2 reviews re-
lated works. Our proposed adversarial example attack is presented in Section
3. The experiments and evaluation are shown in Section 4, and a discussion of
the proposed system is presented in Section 5. Finally, conclusions are given in
Section 6.

2 Related works

The study of adversarial examples was introduced by Szegedy et al. [15] in
2014. The main goal of using an adversarial example is to induce the DNN into
making a mistake by adding a small amount of noise to the original image such
that humans cannot tell the difference between the original and the distorted
image.

The basic method for generating adversarial examples is described in Section
2.1. Adversarial examples can be categorized in three ways: recognition of an
adversarial example, information on the target model information, and method
for generation, as described in Sections 2.2–2.4.
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black box attacks. However, black box attacks only require an input response; no
additional information about the target is needed. In this paper, the proposed
method is a white box attack that knows both the enemy and friendly classifiers.

2.4 Categorization by method for adversarial example generation

There are four typical attacks that generate adversarial examples. The first is
the fast-gradient sign method (FGSM) [4], which can find x∗ through L∞:

x∗ = x+ ε · sign(�lossF,t(x))

where F is an object function and t is a target class. In every FGSM itera-
tion, the gradient is updated by ε from the original x, and x∗ is found through
optimization. This method is simple and demonstrates good performance.

The second attack is iterative FGSM (I-FGSM) [8], which is an updated
version of the FGSM. Instead of changing the amount ε in each step, the smaller
amount of α is updated and eventually clipped by the same ε:

xi
∗ = xi−1

∗ − clipε(α · sign(�lossF,t(xi−1
∗)))

The I-FGSM provides better performance than the FGSM.
The third type of attack is the Deepfool method [10], which is an untargeted

attack and uses the L2 distance measure. This method generates an adversarial
example that is more efficient than the FGSM and as close as possible to the
original image. To generate an adversarial example, this method constructs of
a neural network and looks for x∗ using linearization approximation. However,
because the neural network is not completely linear, we must find the adversarial
example through multiple iterations; i.e., it is a more complicated process than
that of the FGSM.

The fourth attack method is the Carlini attack [2], which is the latest attack
method and delivers better performance than the FGSM and I-FGSM. This
method can achieve a 100% success rate, even against a distillation structure
[11], which was recently introduced in the literature. The key principle of this
method involves the use of a different objective function:

D(x, x∗) + c · f(x∗)

Instead of using the conventional objective function D(x, x∗), this method pro-
poses a means to find an appropriate binary c value. In addition, it suggests a
method to control the attack success rate even with some increased distortion
by reflecting the confidence value as follows:

f(x∗) = max(Z(x∗)t −max {Z(x∗)t : i �= t} ,−k)

where Z(·) represents the pre-softmax classification result vector and t is a target
class.

The four previously mentioned methods add a small amount of noise to the
entire original sample, causing misclassification. In a recent study, Jiawei Su et

3

2.1 Adversarial example generation

The basic architecture that generates an adversarial example comprises two el-
ements: a target model and a transformer. The transformer takes the original
sample x and original class y as input data. Next, the transformer creates a
transformed example x∗ = x+w, with noise value w added to the original sam-
ple x as output; the transformed example x∗ is given as input data to the target
model. The target model then provides the transformer with the class probabil-
ity results for the transformed example. Following this, the transformer updates
the noise values w in the transformed example x∗ = x+w so that the other class
probabilities are higher than the original class probabilities, while minimizing
the distortion distances between x∗ and x.

2.2 Categorization by recognition of adversarial example

According to the class that the target model recognizes from the adversarial
examples, we can divide these examples into two subcategories: targeted and
untargeted. A targeted adversarial example is an adversarial example that causes
the target model to recognize the adversarial image as a particular intended class.
This can be expressed mathematically as follows:

Given a target model and original sample x ∈ X, the problem is an opti-
mization problem that generates a targeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) s. t. f(x∗) = y∗

where L(·) is the distance measure between the original sample x and the trans-
formed example x∗, and y∗ is the particular intended class. f(·) is an operation
function that provides class results for the input values of the target model.

An untargeted adversarial example is an adversarial example that causes the
target model to recognize the adversarial image as a class other than the original
class. It can be expressed mathematically as follows:

Given a target model and original sample x ∈ X, the problem is an opti-
mization problem that generates an untargeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) s. t. f(x∗) �= y

where y ∈ Y is the original class.
Untargeted adversarial examples have the advantages of less distortion from

the original image and shorter learning time when compared with targeted adver-
sarial examples. However, targeted adversarial examples are more sophisticated
attacks as they are misclassified as target classes chosen by the attacker.

2.3 Categorization by information on target model

Depending on the amount of target information required, attacks that generate
adversarial examples can also be divided into two types: white box attacks and
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black box attacks. However, black box attacks only require an input response; no
additional information about the target is needed. In this paper, the proposed
method is a white box attack that knows both the enemy and friendly classifiers.

2.4 Categorization by method for adversarial example generation

There are four typical attacks that generate adversarial examples. The first is
the fast-gradient sign method (FGSM) [4], which can find x∗ through L∞:

x∗ = x+ ε · sign(�lossF,t(x))

where F is an object function and t is a target class. In every FGSM itera-
tion, the gradient is updated by ε from the original x, and x∗ is found through
optimization. This method is simple and demonstrates good performance.

The second attack is iterative FGSM (I-FGSM) [8], which is an updated
version of the FGSM. Instead of changing the amount ε in each step, the smaller
amount of α is updated and eventually clipped by the same ε:

xi
∗ = xi−1

∗ − clipε(α · sign(�lossF,t(xi−1
∗)))

The I-FGSM provides better performance than the FGSM.
The third type of attack is the Deepfool method [10], which is an untargeted

attack and uses the L2 distance measure. This method generates an adversarial
example that is more efficient than the FGSM and as close as possible to the
original image. To generate an adversarial example, this method constructs of
a neural network and looks for x∗ using linearization approximation. However,
because the neural network is not completely linear, we must find the adversarial
example through multiple iterations; i.e., it is a more complicated process than
that of the FGSM.

The fourth attack method is the Carlini attack [2], which is the latest attack
method and delivers better performance than the FGSM and I-FGSM. This
method can achieve a 100% success rate, even against a distillation structure
[11], which was recently introduced in the literature. The key principle of this
method involves the use of a different objective function:

D(x, x∗) + c · f(x∗)

Instead of using the conventional objective function D(x, x∗), this method pro-
poses a means to find an appropriate binary c value. In addition, it suggests a
method to control the attack success rate even with some increased distortion
by reflecting the confidence value as follows:

f(x∗) = max(Z(x∗)t −max {Z(x∗)t : i �= t} ,−k)

where Z(·) represents the pre-softmax classification result vector and t is a target
class.

The four previously mentioned methods add a small amount of noise to the
entire original sample, causing misclassification. In a recent study, Jiawei Su et
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sified by Dfriend. There are two configurations in which the transformed example
x∗ is incorrectly classified by Denemy: the targeted adversarial and untargeted
adversarial examples. In mathematical expressions, the operation functions of
Denemy and Dfriend are denoted as f enemy(x) and f friend(x), respectively. Given
the pre-trained Dfriend and Denemy and the original input x ∈ X, we have an
optimization problem that generates the targeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) s. t. f friend(x∗) = y and f enemy(x∗) = y∗,

where L(·) is the chosen measure of the distance between the original sample
x and transformed example x∗, and y∗ ∈ Y is the target class chosen by the
attacker. An untargeted adversarial example x∗ is similarly generated:

x∗ : argmin
x∗

L(x, x∗) s. t. f friend(x∗) = y and f enemy(x∗) �= y.

This procedure consists of pre-training Dfriend and Denemy and creating a
transformation that generates a one-pixel-safe adversarial example, x∗. First,
Dfriend and Denemy are trained to classify the original sample x.

f friend(x) = y ∈ Y and f enemy(x) = y ∈ Y.

In our experiments, Dfriend and Denemy were trained to classify the original sam-
ples using CIFAR-10 with more than 92% accuracy. Second, the transformer
accepts the original sample and original class as input and produces the trans-
formed example x∗. For this study, we modified the transformer architecture
given in [9][14], and defined x∗ as

x∗ = x+ w,

where x = (x1, ..., xn) is the original sample with n n-dimensional inputs and
w = (w1, ..., wn) is noise with n-dimension.

The classification results of x∗ by Dfriend and Denemy are returned to the
transformer. The transformer then calculates the total objection function, fT(x∗),
and generates a one-pixel-safe adversarial example x∗ by iteratively maximizing
fT(x∗). fT(·) is defined as

maximize
x∗

fT(x∗) = f friend
y (x∗) + f enemy

y∗ (x∗) subject to ‖w‖0 ≤ d, (1)

where f friend
y (x∗) and f enemy

y∗ (x∗) are the objection functions of Dfriend and
Denemy, and d is 1 as the one-pixel attack. In d dimension, all but one of the
remaining pixels in the original sample are zero.

To satisfy the equation (1), the one-pixel attack uses differential evolution
(DE) [3][13]. DE is a population-based optimization algorithm used to solve
optimization problems for multiple models. During iteration, this method gen-
erates candidate solutions (children) based on the current solution (parent). By

5

al. [14] proposed a one-pixel attack that causes misclassification by modifying
a single pixel. In one-pixel attacks, differential evolution [3][13] is used as the
optimizer. The advantage of one-pixel attacks is that they do not affect the
rest of the pixels in the original sample. For example, a traffic sign could be
attacked by modifying one pixel in the sign when it is deployed. In this paper,
the proposed method is constructed by applying a similar one-pixel attack.

3 Proposed method

To generate a one-pixel-safe adversarial example, we propose a network archi-
tecture that consists of a transformer, a friendly discriminator Dfriend, and an
enemy discriminator Denemy, as shown in Fig. 1.

Fig. 1: Proposed architecture.

The transformer takes the original sample x ∈ X and the original class
y ∈ Y as input and converts the original sample to the transformed example x∗.
Furthermore, Dfriend and Denemy are pre-trained classifiers and are not changed
during transformation. They take x∗ as input and provide their classification
result (i.e., confidence) to the transformer.

The goal of this architecture is to add one pixel of noise to the original sample
so that the transformed example x∗ is misclassified by Denemy and correctly clas-
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sified by Dfriend. There are two configurations in which the transformed example
x∗ is incorrectly classified by Denemy: the targeted adversarial and untargeted
adversarial examples. In mathematical expressions, the operation functions of
Denemy and Dfriend are denoted as f enemy(x) and f friend(x), respectively. Given
the pre-trained Dfriend and Denemy and the original input x ∈ X, we have an
optimization problem that generates the targeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) s. t. f friend(x∗) = y and f enemy(x∗) = y∗,

where L(·) is the chosen measure of the distance between the original sample
x and transformed example x∗, and y∗ ∈ Y is the target class chosen by the
attacker. An untargeted adversarial example x∗ is similarly generated:

x∗ : argmin
x∗

L(x, x∗) s. t. f friend(x∗) = y and f enemy(x∗) �= y.

This procedure consists of pre-training Dfriend and Denemy and creating a
transformation that generates a one-pixel-safe adversarial example, x∗. First,
Dfriend and Denemy are trained to classify the original sample x.

f friend(x) = y ∈ Y and f enemy(x) = y ∈ Y.

In our experiments, Dfriend and Denemy were trained to classify the original sam-
ples using CIFAR-10 with more than 92% accuracy. Second, the transformer
accepts the original sample and original class as input and produces the trans-
formed example x∗. For this study, we modified the transformer architecture
given in [9][14], and defined x∗ as

x∗ = x+ w,

where x = (x1, ..., xn) is the original sample with n n-dimensional inputs and
w = (w1, ..., wn) is noise with n-dimension.

The classification results of x∗ by Dfriend and Denemy are returned to the
transformer. The transformer then calculates the total objection function, fT(x∗),
and generates a one-pixel-safe adversarial example x∗ by iteratively maximizing
fT(x∗). fT(·) is defined as

maximize
x∗

fT(x∗) = f friend
y (x∗) + f enemy

y∗ (x∗) subject to ‖w‖0 ≤ d, (1)

where f friend
y (x∗) and f enemy

y∗ (x∗) are the objection functions of Dfriend and
Denemy, and d is 1 as the one-pixel attack. In d dimension, all but one of the
remaining pixels in the original sample are zero.

To satisfy the equation (1), the one-pixel attack uses differential evolution
(DE) [3][13]. DE is a population-based optimization algorithm used to solve
optimization problems for multiple models. During iteration, this method gen-
erates candidate solutions (children) based on the current solution (parent). By
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Algorithm 1 one-pixel-safe adversarial example generation in a transformer.

Input: original sample x, one-pixel noise w, original class y, targeted class y∗, itera-
tions r, dimension d.

Targeted adversarial example generation:
d ← 1
x∗ ← 0
for r step do

x∗ ← x+ w
Update w by maximizing

x∗
f friend
y (x∗) + f enemy

y∗ (x∗) subject to ‖w‖0 ≤ d

end for
return x∗

Untargeted adversarial example generation:
d ← 1
x∗ ← 0
for r step do

x∗ ← x+ w
Update w by maximizing

x∗
f friend
y (x∗)− f enemy

y (x∗) subject to ‖w‖0 ≤ d

end for
return x∗

4 Experiment & evaluation

Our experiments showed that the proposed scheme can generate a one-pixel-
safe adversarial example that is incorrectly classified by enemy classifiers and
correctly classified by friendly classifiers. We used the Tensorflow [1] library (a
widely used open source library) for machine learning on a Xeon E5-2609 1.7-
GHz server.

4.1 Experimental method

In this experiment, we used the CIFAR-10 dataset [7] (planes, cars, birds, cats,
deer, dogs, frogs, horses, boats, and trucks). The CIFAR-10 dataset consists of
50,000 training data and 10,000 test data. The experimental method consisted
of 1) pre-training Dfriend and Denemy and 2) transforming the one-pixel-safe
adversarial example.

First, during pre-training, Dfriend and Denemy were common Resnet networks
[5]. Their configuration and training parameters are shown in Tables 2 and 3 of
the appendix. 50,000 training data were used to train Dfriend and Denemy using
different sample orders. During testing, Dfriend and Denemy correctly classified
the original samples with 92.15% and 92.31% accuracy, respectively.

Next, DE optimization was applied to generate the one-pixel-safe adversarial
example [3][13]. The population size was 400, the scale parameter set was 0.5, the
iteration was 100, and perturbation was 1. The initial population used the uni-
form distribution U(1, 32) to generate the x-y coordinates, and the RGB values

7

comparing the children with their parent, one of two solutions is selected; specif-
ically, this method aims to find the solution with the highest fitness value. The
DE equation [14][3][13] is as follows:

xi(g + 1) = xa(g) + F (xb(g) + xc(g)),

a �= b �= c,

where xi is the element of the candidate solution; a, b, and c are arbitrary
values; F is a scale parameter set; and g is the current generation index. When
a candidate solution (child) is generated, the solution with the highest fitness
values will survive by comparing the candidate solution (child) with the parent
or current solution (parent). The above process is continued until the iteration is
over. Using the DE method, our proposed method generates x∗ by maximizing
fT.

To satisfy f friend(x∗) = y, f friend
y (x∗) should be maximized as

maximize
x∗

f friend
y (x∗),

where y is the original class.
However, f enemy presents two cases (targeted and untargeted adversarial ex-

amples).
To satisfy f enemy(x∗) = y∗, in targeted adversarial examples, f enemy

y∗ (x∗)
should be maximized as

maximize
x∗

f enemy
y∗ (x∗),

where y∗ is the targeted class.
To satisfy f enemy(x∗) �= y in an untargeted adversarial example, f enemy

y∗ (x∗)
should be maximized as

maximize
x∗

f enemy
y∗ (x∗) = maximize

x∗
{−f enemy

y (x∗)},

where y is the original class. The procedure for generating a one-pixel-safe ad-
versarial example is detailed in Algorithm 1.
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Algorithm 1 one-pixel-safe adversarial example generation in a transformer.

Input: original sample x, one-pixel noise w, original class y, targeted class y∗, itera-
tions r, dimension d.

Targeted adversarial example generation:
d ← 1
x∗ ← 0
for r step do

x∗ ← x+ w
Update w by maximizing

x∗
f friend
y (x∗) + f enemy

y∗ (x∗) subject to ‖w‖0 ≤ d

end for
return x∗

Untargeted adversarial example generation:
d ← 1
x∗ ← 0
for r step do

x∗ ← x+ w
Update w by maximizing

x∗
f friend
y (x∗)− f enemy

y (x∗) subject to ‖w‖0 ≤ d

end for
return x∗

4 Experiment & evaluation

Our experiments showed that the proposed scheme can generate a one-pixel-
safe adversarial example that is incorrectly classified by enemy classifiers and
correctly classified by friendly classifiers. We used the Tensorflow [1] library (a
widely used open source library) for machine learning on a Xeon E5-2609 1.7-
GHz server.

4.1 Experimental method

In this experiment, we used the CIFAR-10 dataset [7] (planes, cars, birds, cats,
deer, dogs, frogs, horses, boats, and trucks). The CIFAR-10 dataset consists of
50,000 training data and 10,000 test data. The experimental method consisted
of 1) pre-training Dfriend and Denemy and 2) transforming the one-pixel-safe
adversarial example.

First, during pre-training, Dfriend and Denemy were common Resnet networks
[5]. Their configuration and training parameters are shown in Tables 2 and 3 of
the appendix. 50,000 training data were used to train Dfriend and Denemy using
different sample orders. During testing, Dfriend and Denemy correctly classified
the original samples with 92.15% and 92.31% accuracy, respectively.

Next, DE optimization was applied to generate the one-pixel-safe adversarial
example [3][13]. The population size was 400, the scale parameter set was 0.5, the
iteration was 100, and perturbation was 1. The initial population used the uni-
form distribution U(1, 32) to generate the x-y coordinates, and the RGB values
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(a) Targeted attack (b) Untargeted attack

Fig. 2: The success rate and confidence of Denemy and Dfriend for 200 random
adversarial examples generated by modifying one-, three-, and five-pixel attacks.

4.2 Experimental results

The evaluation of one-pixel-safe adversarial examples is divided into targeted
and untargeted adversarial examples. In addition, we analyzed the success rate
and confidence by additionally modifying groups of three and five pixels.

Targeted attack Table 1 shows one-pixel-safe adversarial examples that were
incorrectly classified as the targeted class by Denemy and correctly classified as
the original class by Dfriend for each original sample. Furthermore, Table 1 shows
that the one-pixel-safe adversarial example is similar to the original sample;
specifically, there is a difference of only one pixel.

Fig. 2(a) shows the success rate and confidence of Denemy and Dfriend for
one-, three-, and five-pixel targeted attacks. In the one-pixel attack, the success
rate was 13.5% where the target attack success rate and friend accuracy were
100%. The confidences of the one-pixel attack also showed that the values of
0.754 and 0.851 for A and B were the highest fitness values. Thus, we know that
it is more difficult to deceive the enemy classifier owing to the high confidence
in the friend classifier. Fig. 2(a) also shows that the success rate increased along
with the number of changeable pixels. In the five-pixel attack, the success rate
was 20.5%.

Untargeted attack Fig. 2(b) shows the success rate and confidence of Denemy

and Dfriend for one-, three-, and five-pixel untargeted attacks. In the one-pixel
attack, the success rate was 26.0% when the untargeted attack success rate and
the friend accuracy were 100%. Because untargeted attacks are easier to optimize
than targeted attacks, the success rate of untargeted attacks was 12.5% higher.
Similar to targeted attacks, Fig. 2(b) shows that the success rate increased along
with the number of changeable pixels. In the five-pixel attack, the success rate
was 52.0%.

9

followed an average of 128 and a standard deviation of 127 for the Gaussian dis-
tribution. For a given number of iterations, the transformer updated the output
x∗ and provided it to Dfriend and Denemy, from which it receives feedback. At the
end of the iterations, the transformation result x∗ was evaluated in terms of the
accuracy of Dfriend, which was the attack success rate. In detail, the accuracy of
Dfriend is the coincidence rate between the original class and the output class of
Dfriend; the attack success rate is the rate at which Denemy incorrectly classifies
x∗. The attack success rate has two configurations: targeted and untargeted. The
targeted attack success rate is the coincidence rate between the targeted class
and the class output by Denemy; the untargeted attack success rate is the rate
of inconsistency between the original class and the output class of Denemy.

Table 1: A one-pixel-safe adversarial example for each target class that was
misclassified by Denemy for each original sample: plane “0,” cars “1,” birds “2,”
cats “3,” deer “4,” dogs “5,” frogs “6,” horses “7,” boats “8,” and trucks “9.”

Original Targeted classes misclassified by Denemy

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
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(a) Targeted attack (b) Untargeted attack

Fig. 2: The success rate and confidence of Denemy and Dfriend for 200 random
adversarial examples generated by modifying one-, three-, and five-pixel attacks.

4.2 Experimental results

The evaluation of one-pixel-safe adversarial examples is divided into targeted
and untargeted adversarial examples. In addition, we analyzed the success rate
and confidence by additionally modifying groups of three and five pixels.

Targeted attack Table 1 shows one-pixel-safe adversarial examples that were
incorrectly classified as the targeted class by Denemy and correctly classified as
the original class by Dfriend for each original sample. Furthermore, Table 1 shows
that the one-pixel-safe adversarial example is similar to the original sample;
specifically, there is a difference of only one pixel.

Fig. 2(a) shows the success rate and confidence of Denemy and Dfriend for
one-, three-, and five-pixel targeted attacks. In the one-pixel attack, the success
rate was 13.5% where the target attack success rate and friend accuracy were
100%. The confidences of the one-pixel attack also showed that the values of
0.754 and 0.851 for A and B were the highest fitness values. Thus, we know that
it is more difficult to deceive the enemy classifier owing to the high confidence
in the friend classifier. Fig. 2(a) also shows that the success rate increased along
with the number of changeable pixels. In the five-pixel attack, the success rate
was 20.5%.

Untargeted attack Fig. 2(b) shows the success rate and confidence of Denemy

and Dfriend for one-, three-, and five-pixel untargeted attacks. In the one-pixel
attack, the success rate was 26.0% when the untargeted attack success rate and
the friend accuracy were 100%. Because untargeted attacks are easier to optimize
than targeted attacks, the success rate of untargeted attacks was 12.5% higher.
Similar to targeted attacks, Fig. 2(b) shows that the success rate increased along
with the number of changeable pixels. In the five-pixel attack, the success rate
was 52.0%.
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to five pixels, the success rates were 20.5% and 52.0% for targeted and untar-
geted attacks, respectively. This method can also be used in applications such
as stickers.

In future work, we will expand the proposed method to new datasets, such as
the ImageNet and Voice. In addition, future work will involve the implementation
of new algorithms to improve upon the results achieved in these experiments.
Finally, challenges related to countermeasures against our proposed method must
be addressed.
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5 Discussion

Attack method consideration Our proposed method added one-pixel noise
with strange colors to the original sample; however, human perception was main-
tained at 100%. In addition, one out of 3,072 pixels of CIFAR-10 is about 0.03%
part, meaning one-pixel noise was very low.

We considered targeted or untargeted attacks depending on priority differ-
ences between the success rate and the goals of the target model misrecognition.
If the success rate was more important, the attacker chose an untargeted attack.
If an attacker wished to change the misclassification into a target class of their
choice, they used a targeted attack.

The assumption of the proposed method was a white box attack that has
identified the enemy and friendly classifiers. Since DE optimization searches for
one pixel with the highest confidence value, the proposed method must know
the classification results of Denemy and Dfriend to derive the input values.

Application The one-pixel-safe adversarial example can be applied to practical
applications (such as stickers). For example, once a traffic left sign has been
deployed, a hybrid adversarial left sign can be generated by replacing one pixel
that was generated in advance. Thus, a one-pixel-safe adversarial left sign can be
misclassified as a right sign by an enemy vehicle and can be correctly classified
as a left sign by a friendly vehicle.

Limitation The proposed method has a lower success rate than the conventional
one-pixel attack method. In the ResNet model [5], the conventional one-pixel
attack achieved a higher success rate than the proposed method with 15.0% and
33.5% success rates for targeted and untargeted attacks, respectively. Since the
proposed method has a higher recognition condition for a friendly classifier, it
is difficult to confirm that a modification of one pixel satisfies a one-pixel-safe
adversarial example. To increase the success rate of the proposed method, we
must also increase the number of pixels that can be modified.

6 Conclusion

In this paper, we proposed a novel one-pixel-safe adversarial example by modi-
fying a single pixel. The proposed method generated a one-pixel-safe adversarial
example by adding one pixel of noise to the original sample, thereby causing
misclassification for enemy classifiers and maintaining correct recognition for
friendly classifiers. Experimental results on CIFAR-10 data confirmed that the
proposed method showed a success rate of 13.5% and 26.0% for targeted and un-
targeted attacks, respectively. Although these rates are slightly lower than those
of the conventional one-pixel method (15% and 33.5%), our proposed method
protects 100% of friendly classifiers. When the proposed method was applied
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to five pixels, the success rates were 20.5% and 52.0% for targeted and untar-
geted attacks, respectively. This method can also be used in applications such
as stickers.

In future work, we will expand the proposed method to new datasets, such as
the ImageNet and Voice. In addition, future work will involve the implementation
of new algorithms to improve upon the results achieved in these experiments.
Finally, challenges related to countermeasures against our proposed method must
be addressed.
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Appendix

Table 2: Dfriend and Denemy model of 34-layer ResNet [5]

Layer type Model shape

#1 layer Convolution+ReLU [7, 7, 64]
Max pooling [3, 3]
#2 layer Convolution+ReLU [1, 1, 64]
#2 layer Convolution+ReLU [3, 3, 64]
#2 layer Convolution+ReLU [1, 1, 256]
#2 layer Repeat 3 times
#3 layer Convolution+ReLU [3, 3, 128]
#3 layer Convolution+ReLU [3, 3, 128]
#3 layer Repeat 4 times
#4 layer Convolution+ReLU [3, 3, 256]
#4 layer Convolution+ReLU [3, 3, 256]
#4 layer Repeat 6 times
#5 layer Convolution+ReLU [3, 3, 512]
#5 layer Convolution+ReLU [3, 3, 512]
#5 layer Repeat 3 times
Fully connected+ReLU [1000]
Softmax [10]

Table 3: Dfriend and Denemy model parameters.

Parameter Values

Learning rate of SGD [6] 0.1
Momentum 0.9
Delay rate 1 (decay 0.0001)
Iteration 50,000
Batch size 128
Epochs 200
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1 Introduction

Pairing-Based Cryptography (PBC) provides several innovative protocols, e.g.
ID-based encryption [6] and BLS short signatures [5] making it an inseparable
tool of modern cryptography. The prerequisites for PBC are a pairing-friendly
elliptic curve [9] and an efficient pairing algorithm. Over the years, several vari-
ants of Weil’s pairing i.e. ate [7], χ-ate [15], optimal-ate [17] pairings have been
evolved. However, find a suitable pairing-friendly curve is a nontrivial task. In
2005 Barreto et al. [4] made a major breakthrough introducing parameterized
pairing-friendly curve named as Barreto-Naehrig (BN) curve given as polynomial
formulas of an integer. This work especially focuses on pairing in BN curve.

A bilinear-pairing is an efficiently computable non-degenerate map e : G1 ×
G2 → G3. Typically, G1 and G2 are additive cyclic sub-groups of order r defined
over a finite extension field Fpk and G3 is a multiplicative cyclic sub-group of
order r in F∗

pk . The embedding degree k (k = 12 for BN) is the smallest positive
integer such that r|(pk − 1), where prime p and order r is given by polynomial
formulas of integer χ.

When considering the pairing over BN curves, suitable parameter χ have to
be found for which both p and r become an odd prime number. Then it comes
to determining an elliptic curve E : y2 = x3+ b to be a BN curve over the prime
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as follows: 



p = p(χ) = 36χ4 + 36χ3 + 24χ2 + 6χ+ 1,
r = r(χ) = 36χ4 + 36χ3 + 18χ2 + 6χ+ 1,
t = t(χ) = 6χ2 + 1.

(1)

where χ is an integer. In what follows, the parameters χ are called BN parameter
and the primes p are called BN prime. If #E(Fp) = r, E becomes a BN curve.

Tower of the Extension Field: Pairing requires arithmetic operations
in embedded extension fields. It is important to consider the way to construct
the extension field since it affects to the efficiency of the pairing. Therefore, this
paper especially focuses on the constructing efficient tower of the extension field.
Bailey et al. [2] proposed the optimal extension field by the towering irreducible
binomials. In the context of the pairing over BN curve, where k = 12, one of
the way to construct the efficient extension field proposed by Aranha et al. [1]
as follows: 


Fp2 = Fp[α]/(α

2 − (−1)),
Fp6 = Fp2 [β]/(β3 − (α+ 1)),
Fp12 = Fp6 [γ]/(γ2 − β),

(2)

where p is a BN prime and α, β, γ are one of the roots of the modular polynomials
of Fp2 ,Fp6 and Fp12 . The set of the basis elements constructing Fp12 vector is
denoted as

{
1, α, β, αβ, β2, αβ2, γ, αγ, βγ, αβγ, β2γ, αβ2γ

}
.

Ate-based pairing: While BN curve is applied in different variants of pair-
ings, e.g. ate [7], optimal-ate [17] and χ-ate [15] pairing; the groups G1, G2 and
G3 for such ate-based pairings are defined as G1 = E(Fp12)[r] ∩ Ker(φ − [1]),
G2 = E(Fp12)[r] ∩ Ker(φ − [p]), G3 = F∗

p12/(F∗
p12)r. E(Fp12)[r] denotes rational

points of order r and [s] denotes s times scalar multiplication for a rational point.
φ denotes the Frobenius mapping given as φ : (x, y) �→ (xp, yp). Ker(·) is the ker-
nel of ·, which means that Ker(·) is a set whose elements are mapped to an initial
point by ·. In what follows, we consider P ∈ G1 ⊆ E(Fp) and Q ∈ G2 ⊂ E(Fp12).
Then, optimal-ate eα(Q,P ) and χ-ate eζ(Q,P ) pairing are given as follows:

eα(Q,P ) =
{
f6χ+2,Q(P ) · l[6χ+2]Q,[p]Q(P ) · l[6χ+2+p]Q,[−p2]Q(P )

} p12−1
r ,

eζ(Q,P ) =
{
fχ,Q(P )(1+p3)(1+p10) · l[χ]Q,φ3([χ]Q)(P )

·l[χ]Q+φ3([χ]Q),φ10([χ]Q+φ3([χ]Q))(P )
} p12−1

r .

where the first term of eα and eζ denotes the output of Miller’s loop and the
second and third term are the line evaluations. An efficient way to calculate
these line evaluation steps, called 7-sparse and pseudo 8-sparse multiplication
are proposed in [12, 14]. The details of the line evaluation are discussed in Sect.4.

3 Attractive Classes of BN curves

This section shows that the proposed classes of BN curves can result in efficient
pairing implementation. Table 1 shows two classes of the BN curve parameter,

2 Nanjo et al.

field Fp. The probabilistic way to prove curve coefficient b is to choose a ran-
dom b and check the group order until #E(Fp) = r. Moreover, a sextic twisted
curve E(Fp12/d) (d = 6) also have to be determined, since the Millers algorithm
for pairing in BN curve is calculated over E. However, E could not be deter-
mined immediately since there exist two possible types of the twisted curve with
d = 6. As noted above, these initial settings require time-consuming computa-
tion. In addition to this, when selecting the parameters, the following cautions
are considered for an efficient implementation of pairing. The Parameters have
an effect on efficient towering; another prerequisite of efficient finite field arith-
metic; one of the pivotal factors of efficient pairing implementation. Also, the
parameters with a small Hamming weight result in reducing calculation amount
of the Miller’s algorithm and final exponentiation. Moreover, the authors found
that not all parameters end up efficient line evaluation of Millers algorithm due
to the type of twisted curve E′. However, the conditions of suitable parameters
have not clearly given at this point. This paper overcomes the aforementioned
challenges of efficient pairing in BN curve by restricting parameter as mentioned
below.

Our contribution: The major contribution of this paper can be summarized
as (i) offering two attractive classes of BN curves by restricting integer χ as
χ ≡ 7, 11 (mod 12). (ii) The restriction also results in an efficient tower of
extension field construction given in [1]. (iii) Instantaneously determining the
coefficient b in BN curve and resulting obvious rational points overcomes the
probabilistic approach. (iv) The twisted curve and its coefficients can also be
determined easily from the condition on χ. (v) Proposed parameter satisfying
χ ≡ 11 (mod 12) enables more efficient implementation pairing. Moreover, the
authors implemented several candidate curves and compared performances for
the lower Hamming weight.

Previous works: BN curve is one of the most widely studied pairing-friendly
curves. The most relevant work similar to this is Costello et al.’s [8] proposal
on restricting the parameter for BLS curve for embedding degree 24. They also
mention the efficiency of the Miller’s algorithm. This paper not only describes
more details applying pseudo 8-sparse multiplication but also focus on the small
Hamming weight of the parameter.

Organization of this paper: Sect. 2 overviews some necessary backgrounds.
Sect. 3 and 4 gives the required details with theoretic proofs of the proposal. The
implementation results are compared in Sect. 5 and Sect. 6 draws the conclusion.

2 Fundamentals

This section shows that the details of the necessary fundamentals of pairing over
BN curve to keep the reference and for easy explanation of rest of the paper.

BN Curve: Barreto-Naehrig curve [4] is a class of non super-singular (or-
dinary) pairing-friendly elliptic curves of embedding degree k = 12 defined as
E/Fp : y2 = x3 + b. Its characteristic p, order r and Frobenius trace t are given
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as follows: 



p = p(χ) = 36χ4 + 36χ3 + 24χ2 + 6χ+ 1,
r = r(χ) = 36χ4 + 36χ3 + 18χ2 + 6χ+ 1,
t = t(χ) = 6χ2 + 1.

(1)

where χ is an integer. In what follows, the parameters χ are called BN parameter
and the primes p are called BN prime. If #E(Fp) = r, E becomes a BN curve.

Tower of the Extension Field: Pairing requires arithmetic operations
in embedded extension fields. It is important to consider the way to construct
the extension field since it affects to the efficiency of the pairing. Therefore, this
paper especially focuses on the constructing efficient tower of the extension field.
Bailey et al. [2] proposed the optimal extension field by the towering irreducible
binomials. In the context of the pairing over BN curve, where k = 12, one of
the way to construct the efficient extension field proposed by Aranha et al. [1]
as follows: 


Fp2 = Fp[α]/(α

2 − (−1)),
Fp6 = Fp2 [β]/(β3 − (α+ 1)),
Fp12 = Fp6 [γ]/(γ2 − β),

(2)

where p is a BN prime and α, β, γ are one of the roots of the modular polynomials
of Fp2 ,Fp6 and Fp12 . The set of the basis elements constructing Fp12 vector is
denoted as

{
1, α, β, αβ, β2, αβ2, γ, αγ, βγ, αβγ, β2γ, αβ2γ

}
.

Ate-based pairing: While BN curve is applied in different variants of pair-
ings, e.g. ate [7], optimal-ate [17] and χ-ate [15] pairing; the groups G1, G2 and
G3 for such ate-based pairings are defined as G1 = E(Fp12)[r] ∩ Ker(φ − [1]),
G2 = E(Fp12)[r] ∩ Ker(φ − [p]), G3 = F∗

p12/(F∗
p12)r. E(Fp12)[r] denotes rational

points of order r and [s] denotes s times scalar multiplication for a rational point.
φ denotes the Frobenius mapping given as φ : (x, y) �→ (xp, yp). Ker(·) is the ker-
nel of ·, which means that Ker(·) is a set whose elements are mapped to an initial
point by ·. In what follows, we consider P ∈ G1 ⊆ E(Fp) and Q ∈ G2 ⊂ E(Fp12).
Then, optimal-ate eα(Q,P ) and χ-ate eζ(Q,P ) pairing are given as follows:

eα(Q,P ) =
{
f6χ+2,Q(P ) · l[6χ+2]Q,[p]Q(P ) · l[6χ+2+p]Q,[−p2]Q(P )

} p12−1
r ,

eζ(Q,P ) =
{
fχ,Q(P )(1+p3)(1+p10) · l[χ]Q,φ3([χ]Q)(P )

·l[χ]Q+φ3([χ]Q),φ10([χ]Q+φ3([χ]Q))(P )
} p12−1

r .

where the first term of eα and eζ denotes the output of Miller’s loop and the
second and third term are the line evaluations. An efficient way to calculate
these line evaluation steps, called 7-sparse and pseudo 8-sparse multiplication
are proposed in [12, 14]. The details of the line evaluation are discussed in Sect.4.

3 Attractive Classes of BN curves

This section shows that the proposed classes of BN curves can result in efficient
pairing implementation. Table 1 shows two classes of the BN curve parameter,
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Proof. The details of the proof, please refer to [16, §5.1]. ��
Lemma 1. If the characteristic p is a BN prime and χ satisfies χ ≡ 7, 11 (mod
12), the efficient tower of the extension field given in Eq.(2) can be constructed.

Proof. To construct Fp
α2−(−1)−−−−−−→ Fp2 , α2 − (−1) should be an irreducible poly-

nomial over Fp. Therefore, −1 has to be a quadratic non-residue in Fp. Then,
χ should be satisfying χ ≡ 1 (mod 2) from Eq.(3a). In the similar way, when

constructing Fp2

β3−(α+1)−−−−−−→ Fp6
γ2−β−−−→ Fp12 , (α + 1) should be a quadratic and

cubic non-residue in Fp2 . This condition means that 2 ∈ Fp has to be a quadratic
and cubic non-residue as shown in the following equations.

(α+ 1)
p2−1

2 = ((α+ 1)p(α+ 1))
p−1
2 = 2

p−1
2 = −1,

(α+ 1)
p2−1

3 = ((α+ 1)p(α+ 1))
p−1
3 = 2

p−1
3 �= 1.

According to Eq.(3b) and Eq.(3c), if 2 is a quadratic and cubic non-residue
in Fp, χ should satisfy χ ≡ 1, 2 (mod 3), χ ≡ 2, 3 (mod 4). Therefore, the
condition to construct efficient extension field is given by χ ≡ 1, 2 (mod 3), χ ≡
3 (mod 4) which means χ ≡ 7, 11 (mod 12). ��
From the proposed conditions, it is clear that it shrinks the probability of getting
smaller Hamming weight (HW) of χ. Smaller Hamming weight (less than 6) is a
catalyst for efficient Millers algorithm and final exponentiation. Since, according
to [3], for 128-bit security, the �log2 χ� = 114 is expected. Therefore, an ex-
haustive search can result in smaller Hamming weight along with the proposed
conditions.

3.2 Two Attractive Classes of the BN Curve

In this part, we proof the coefficients of the curve to end up in a BN curve can be
determined as y2 = x3 + 26l−1, y2 = x3 + 26l+1 applying the theorem proposed
by Shirase [16]. For the reference in our proof, we recall the theorem given by
Shirase as follows:

Theorem 2. Let p be a BN prime, and let n0 = n0(χ), n1 = n1(χ), n2 = n2(χ),
n3 = n3(χ), n4 = n4(χ) and n5 = n5(χ) be polynomials defined as

n0(χ) = 12χ2(3χ2 + 3χ+ 1), n1(χ) = 36χ4 + 36χ3 + 18χ2 + 1,

n2(χ) = 3(12χ4 + 12χ3 + 10χ2 + 2χ+ 1), n3(χ) = 4(9χ4 + 9χ3 + 9χ2 + 3χ+ 1),

n4(χ) = 3(12χ4 + 12χ3 + 10χ2 + 4χ+ 1), n5(χ) = 36χ4 + 36χ3 + 18χ2 + 6χ+ 1.

Then, the group orders of E2 : y2 = x3 + 2 are determined as follows:

#E2(Fp) =




n0 if χ ≡ 0, 9 (mod 12),
n1 if χ ≡ 7, 10 (mod 12),
n2 if χ ≡ 5, 8 (mod 12),
n3 if χ ≡ 3, 6 (mod 12),
n4 if χ ≡ 1, 4 (mod 12),
n5 if χ ≡ 2, 11 (mod 12).

(4)

4 Nanjo et al.

categorized as Class 1 and Class 2. The conditions χ ≡ 7 (mod 12) and χ ≡
11 (mod 12) are satisfied by Class 1 and Class 2 respectively. The advantages
of choosing such parameters are following.

– The efficient towering of Fp12 given in Eq.(2) can be constructed (See Lemma
1 below).

– The coefficients of the curve E/Fp to be a BN curve can be determined
uniquely. Once a BN parameter satisfying χ ≡ 7, 11 (mod 12) is found, the
BN curves are immediately given as y2 = x3 + 26l−1, y2 = x3 + 26l+1,
where l is an integer (See Lemma 2 below). The curve y2 = x3 + 26l+1 can
have an obvious generator point (−22l,±23l). And also y2 = x3 + 26l−1 has
(−22l,±(−2)−1/2 · 23l), where −2 is a quadratic residue in Fp since −1 and
2 are quadratic non-residues in Fp (See Theorem 1).

– The correct twisted curves can also be determined uniquely. The parameter
χ ≡ 7, 11 (mod 12) results in twisted curve as y2 = x3 + 26l−1(α + 1),
y2 = x3 + 26l+1(α+ 1)−1 (See Lemma 3 below).

In the following subsections, this paper shows how the proposed condition of
χ can result in efficient towering of Fp12 . At the same time, it also shows how
uniquely the BN curves’ and its twisted curves’ coefficients can be determined
in E/Fp and E′/Fp2 respectively.

Table 1. Two attractive classes of the BN curve

Type Condition of χ
Efficient BN curve Twisted curve
towering E/Fp E′/Fp2

Class 1 χ ≡ 7 (mod 12) � y2 = x3 + 26l−1 y2 = x3 + 26l−1(α+ 1)

Class 2 χ ≡ 11 (mod 12) � y2 = x3 + 26l+1 y2 = x3 + 26l+1(α+ 1)−1

3.1 Using Parameters Satisfying χ ≡ 7, 11 (mod 12)

This subsection describes the theorem of quadratic and cubic residue in Fp. In
addition to this, it also shows the proof of the parameter χ ≡ 7, 11 (mod 12).

Theorem 1. Let (−) be the Legendre symbol and (−)3 be a multiplicative func-
tion defined as follows:

(
µ

p

)

3

{
= 1 if µ is a cubic residue in Fp,
�= 1 if µ is a cubic non-residue in Fp.

If the characteristic p is a BN prime; quadratic and cubic residue properties for
certain elements in Fp are given by the condition of BN parameter χ as follows:

(a)

(
−1

p

)
=

{
1 if χ ≡ 0 (mod 2),
−1 if χ ≡ 1 (mod 2).

(3a)

(b)

(
2

p

)
=

{
1 if χ ≡ 0, 1 (mod 4),
−1 if χ ≡ 2, 3 (mod 4).

(3b)

(c)

(
2

p

)

3

{
= 1 if χ ≡ 0 (mod 3),
�= 1 if χ ≡ 1, 2 (mod 3).

(3c)
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Proof. The details of the proof, please refer to [16, §5.1]. ��
Lemma 1. If the characteristic p is a BN prime and χ satisfies χ ≡ 7, 11 (mod
12), the efficient tower of the extension field given in Eq.(2) can be constructed.

Proof. To construct Fp
α2−(−1)−−−−−−→ Fp2 , α2 − (−1) should be an irreducible poly-

nomial over Fp. Therefore, −1 has to be a quadratic non-residue in Fp. Then,
χ should be satisfying χ ≡ 1 (mod 2) from Eq.(3a). In the similar way, when

constructing Fp2

β3−(α+1)−−−−−−→ Fp6
γ2−β−−−→ Fp12 , (α + 1) should be a quadratic and

cubic non-residue in Fp2 . This condition means that 2 ∈ Fp has to be a quadratic
and cubic non-residue as shown in the following equations.

(α+ 1)
p2−1

2 = ((α+ 1)p(α+ 1))
p−1
2 = 2

p−1
2 = −1,

(α+ 1)
p2−1

3 = ((α+ 1)p(α+ 1))
p−1
3 = 2

p−1
3 �= 1.

According to Eq.(3b) and Eq.(3c), if 2 is a quadratic and cubic non-residue
in Fp, χ should satisfy χ ≡ 1, 2 (mod 3), χ ≡ 2, 3 (mod 4). Therefore, the
condition to construct efficient extension field is given by χ ≡ 1, 2 (mod 3), χ ≡
3 (mod 4) which means χ ≡ 7, 11 (mod 12). ��
From the proposed conditions, it is clear that it shrinks the probability of getting
smaller Hamming weight (HW) of χ. Smaller Hamming weight (less than 6) is a
catalyst for efficient Millers algorithm and final exponentiation. Since, according
to [3], for 128-bit security, the �log2 χ� = 114 is expected. Therefore, an ex-
haustive search can result in smaller Hamming weight along with the proposed
conditions.

3.2 Two Attractive Classes of the BN Curve

In this part, we proof the coefficients of the curve to end up in a BN curve can be
determined as y2 = x3 + 26l−1, y2 = x3 + 26l+1 applying the theorem proposed
by Shirase [16]. For the reference in our proof, we recall the theorem given by
Shirase as follows:

Theorem 2. Let p be a BN prime, and let n0 = n0(χ), n1 = n1(χ), n2 = n2(χ),
n3 = n3(χ), n4 = n4(χ) and n5 = n5(χ) be polynomials defined as

n0(χ) = 12χ2(3χ2 + 3χ+ 1), n1(χ) = 36χ4 + 36χ3 + 18χ2 + 1,

n2(χ) = 3(12χ4 + 12χ3 + 10χ2 + 2χ+ 1), n3(χ) = 4(9χ4 + 9χ3 + 9χ2 + 3χ+ 1),

n4(χ) = 3(12χ4 + 12χ3 + 10χ2 + 4χ+ 1), n5(χ) = 36χ4 + 36χ3 + 18χ2 + 6χ+ 1.

Then, the group orders of E2 : y2 = x3 + 2 are determined as follows:

#E2(Fp) =




n0 if χ ≡ 0, 9 (mod 12),
n1 if χ ≡ 7, 10 (mod 12),
n2 if χ ≡ 5, 8 (mod 12),
n3 if χ ≡ 3, 6 (mod 12),
n4 if χ ≡ 1, 4 (mod 12),
n5 if χ ≡ 2, 11 (mod 12).

(4)

The 19th World Conference on Information Security Applications

-57-



Efficient Ate-Based Pairing over the Attractive Classes of BN Curves 7

Next, we show the proof of the the twisted curve E′/Fp2 can be determined as
y2 = x3 + 26l−1(α+ 1), y2 = x3 + 26l+1(α+ 1)−1 for each parameters.

Lemma 3. When Fp12 is constructed by Eq.(2), the correct sextic twist with E′

can be obtained uniquely. If the parameter satisfies χ ≡ 7 ( mod 12), E′
26l−1/Fp2 :

y2 = x3+26l−1(α+1) becomes twisted curve. When χ ≡ 11 ( mod 12), E′
26l+1/Fp2 :

y2 = x3 + 26l+1(α+ 1)−1 becomes twisted curve.

Proof. There exist two twists of E with the degree 6, E′ has only two possible
group orders given as p2 + 1 − (−3f2 + t2)/2 or p2 + 1 − (3f2 + t2)/2 [13],
where t2 is a Frobenius trace of E over Fp2 computed as t2 = t2 − 2p. f2 is
an integer calculated by 4p2 = t22 + 3f2

2 . In the context of BN curve, t2 and f2
are given by t2 = t2(χ) = −36χ4 − 72χ3 − 36χ2 − 12χ − 1 and f2 = f2(χ) =
(6χ2 + 1)(6χ2 + 4χ + 1) respectively. Then, the possible group orders can be
denoted as 4(324χ8 + 648χ7 + 756χ6 + 540χ5 + 288χ4 + 108χ3 + 30χ2 + 6χ+ 1)
or (36χ4 + 36χ3 + 18χ2 + 6χ + 1)(36χ4 + 36χ3 + 30χ2 + 6χ + 1). Thus, it is
found that the twisted curve order becomes #E′(Fp2) = (36χ4 + 36χ3 + 18χ2 +
6χ + 1)(36χ4 + 36χ3 + 30χ2 + 6χ + 1) since E′ has a unique order such taht
r = r(χ)|#E′(Fp2). It means that E′(Fp2) can not divisible by 2. Therefore, the
twisted curve E′ coefficients should be a cubic non-residue in Fp2 . Now in the
case of the BN curve denoted as y2 = x3 +26l+1, twisted curves can be denoted
as y2 = x3+26l+1(α+1) or y2 = x3+26l+1(α+1)−1 since (α+1) and (α+1)−1

are quadratic and cubic non-residue in Fp2 . Then, the cubic residue properties
of each curve coefficients can be denoted as follows:

(
26l+1(α+ 1)

) p2−1
3 =

((
26l+1(α+ 1)

)p+1
) p−1

3

=
(
(26l+1)2 · 2

) p−1
3 = 1,

(
26l+1(α+ 1)−1

) p2−1
3 =

((
26l+1(α+ 1)−1

)p+1
) p−1

3

=
(
(26l+1)2 · 2−1

) p−1
3 �= 1.

Since the coefficient of E′ needs to be a cubic non-residue in Fp2 , the twisted
curve is determined as y2 = x3 + 26l+1(α+ 1)−1. In the case of y2 = x3 + 26l−1,
its twisted curves are also derived in the same way. ��

4 Implementation Pairing Using Attractive Classes

This section shows the overview of sparse multiplication techniques and describes
the implementation difference between two classes.

4.1 Overview: Sparse multiplication for Miller’s Algorithm

It is well known that the line evaluation can be optimized by applying the 7-
sparse multiplication [12]. Mori et al. [14] have shown a more efficient technique
called the pseudo 8-sparse multiplication for BN curve in the affine coordinate.

Let P (xP , yP ) be a rational point in G1 and Q(xQ, yQ) and T (xT , yT ) be
rational points in G2. Let us consider the sextic twist given as

ψ6 : E′(Fp2) → E(Fp12), (xQ′ , yQ′) �→ (xQ′z−1/3, yQ′z−1/2),

6 Nanjo et al.

Proof. Please refer to [16, §5.2] ��

Remark 1. The group orders n0, n1, n2, n3, n4 and n5 can be denoted as

n0 = p+ 1− (3f + t)/2, n1 = p+ 1− (3f − t)/2, n2 = p+ 1− (−t),
n3 = p+ 1− (−3f − t)/2, n4 = p+ 1− (−3f + t)/2, n5 = p+ 1− t,

where p is a BN prime, t is a Frobenius trace and f = f(χ) = 6χ2 + 4χ + 1 is
an integer. From the definition [4], an elliptic curve which has the order n5 = r
becomes BN curve.

Remark 2. The divisibility of the group order by 2 or 3 of the curve Eb(Fpk) :
y2 = x3+b depends on its coefficient. If the coefficient b is a cubic residue in Fpk ,

#Eb(Fpk) is divisible by 2, since there exists an obvious rational point (−b1/3, 0)
of order 2. Therefore, if p is a BN prime and b has a cubic residue property,
#Eb(Fp) can be determine as n0 or n3. Similarly, if the coefficient b is quadratic
residue in Fp, #Eb(Fp) is divisible by 3 and determined as n0, n2 or n4.

Lemma 2. (i) The BN parameter χ satisfying χ ≡ 11 (mod 12) results in the
BN curve as E26l+1/Fp : y2 = x3 + 26l+1, where l ∈ Z. (ii) If the parameter
satisfies χ ≡ 7 (mod 12), the curve E26l−1/Fp : y2 = x3 + 26l−1 always becomes
BN curve.

Proof. (i) If the BN parameter satisfies χ ≡ 11 (mod 12), we first note that the
group order #E2(Fp) is n5 from Eq.(4) in Theorem 2. Then, let us consider a
map from E26l+1 to E2 given as follows:

E26l+1 : y2 = x3 + 26l+1 → E2 : y2 = x3 + 2, (x, y) �→ (2−2lx, 2−3ly).

It is easily found that the map is isomorphic in Fp since 2−2l and 2−3l are
elements in Fp. Therefore, we got the equation #E26l+1(Fp) = #E2(Fp) = n5.

(ii) If the BN parameter satisfies χ ≡ 7 (mod 12), the group order #E2(Fp)
is n1 from Eq.(4). Then, let us consider following twist mapping.

E26l−1 : y2 = x3 + 26l−1 → E26l+1 : y2 = x3 + 26l+1, (x, y) �→ (2
2
3x, 2y).

Since 2 is a cubic non-residue element in Fp, the isomorphic mapping exists in
Fp3 and we can say that E26l−1 is a twisted curve of E26l+1 with the twist degree
3. There exist two types of twist of degree 3. E26l−1 has only two possible group
orders given as p + 1 − (3f1 − t1)/2 or p + 1 − (−3f1 − t1)/2, where t1 is the
Frobenius trace of E26l+1(Fp) and f1 is computed by 4p = t21 + 3f2

1 [13]. We
can represent t1, f1 as t1 = t1(χ) = 6χ2 + 6χ + 1, f1 = f1(χ) = 6χ2 + 2χ + 1
since #E26l+1(Fp) = n1. Thus, the possible group order can be obtained as
n5 = 36χ4 + 36χ3 + 18χ2 + 6χ + 1 and n3 = 4(9χ4 + 9χ3 + 9χ2 + 3χ + 1). As
discussed in Remark 2, when the group order of elliptic curves can be divisible by
2, coefficients of the curve should have cubic residue property. Here, #E26l−1(Fp)
cannot have 2 as a factor since the curve coefficient 26l−1 has cubic non-residue
property. Finally we can find #E26l−1(Fp) = n5. According to Remark 1, the
curves having the order n5 become BN curve, E26l−1 and E26l+1 end up as BN
curve for the respective conditions of χ. ��
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Next, we show the proof of the the twisted curve E′/Fp2 can be determined as
y2 = x3 + 26l−1(α+ 1), y2 = x3 + 26l+1(α+ 1)−1 for each parameters.

Lemma 3. When Fp12 is constructed by Eq.(2), the correct sextic twist with E′

can be obtained uniquely. If the parameter satisfies χ ≡ 7 ( mod 12), E′
26l−1/Fp2 :

y2 = x3+26l−1(α+1) becomes twisted curve. When χ ≡ 11 ( mod 12), E′
26l+1/Fp2 :

y2 = x3 + 26l+1(α+ 1)−1 becomes twisted curve.

Proof. There exist two twists of E with the degree 6, E′ has only two possible
group orders given as p2 + 1 − (−3f2 + t2)/2 or p2 + 1 − (3f2 + t2)/2 [13],
where t2 is a Frobenius trace of E over Fp2 computed as t2 = t2 − 2p. f2 is
an integer calculated by 4p2 = t22 + 3f2

2 . In the context of BN curve, t2 and f2
are given by t2 = t2(χ) = −36χ4 − 72χ3 − 36χ2 − 12χ − 1 and f2 = f2(χ) =
(6χ2 + 1)(6χ2 + 4χ + 1) respectively. Then, the possible group orders can be
denoted as 4(324χ8 + 648χ7 + 756χ6 + 540χ5 + 288χ4 + 108χ3 + 30χ2 + 6χ+ 1)
or (36χ4 + 36χ3 + 18χ2 + 6χ + 1)(36χ4 + 36χ3 + 30χ2 + 6χ + 1). Thus, it is
found that the twisted curve order becomes #E′(Fp2) = (36χ4 + 36χ3 + 18χ2 +
6χ + 1)(36χ4 + 36χ3 + 30χ2 + 6χ + 1) since E′ has a unique order such taht
r = r(χ)|#E′(Fp2). It means that E′(Fp2) can not divisible by 2. Therefore, the
twisted curve E′ coefficients should be a cubic non-residue in Fp2 . Now in the
case of the BN curve denoted as y2 = x3 +26l+1, twisted curves can be denoted
as y2 = x3+26l+1(α+1) or y2 = x3+26l+1(α+1)−1 since (α+1) and (α+1)−1

are quadratic and cubic non-residue in Fp2 . Then, the cubic residue properties
of each curve coefficients can be denoted as follows:

(
26l+1(α+ 1)

) p2−1
3 =

((
26l+1(α+ 1)

)p+1
) p−1

3

=
(
(26l+1)2 · 2

) p−1
3 = 1,

(
26l+1(α+ 1)−1

) p2−1
3 =

((
26l+1(α+ 1)−1

)p+1
) p−1

3

=
(
(26l+1)2 · 2−1

) p−1
3 �= 1.

Since the coefficient of E′ needs to be a cubic non-residue in Fp2 , the twisted
curve is determined as y2 = x3 + 26l+1(α+ 1)−1. In the case of y2 = x3 + 26l−1,
its twisted curves are also derived in the same way. ��

4 Implementation Pairing Using Attractive Classes

This section shows the overview of sparse multiplication techniques and describes
the implementation difference between two classes.

4.1 Overview: Sparse multiplication for Miller’s Algorithm

It is well known that the line evaluation can be optimized by applying the 7-
sparse multiplication [12]. Mori et al. [14] have shown a more efficient technique
called the pseudo 8-sparse multiplication for BN curve in the affine coordinate.

Let P (xP , yP ) be a rational point in G1 and Q(xQ, yQ) and T (xT , yT ) be
rational points in G2. Let us consider the sextic twist given as

ψ6 : E′(Fp2) → E(Fp12), (xQ′ , yQ′) �→ (xQ′z−1/3, yQ′z−1/2),
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Then, the line evaluation of the pseudo 8-sparse form can be obtained for the
rational point P̂ ∈ Ê′(Fp) and Q̂′, T̂ ′ ∈ Ê′(Fp2) as follows:

l̂T̂ ′,Q̂′(P ) = 1− (α+ 1)−1Cβ2γ + (α+ 1)−1EyP̂
−1βγ. (7)

Finally, the pseudo 8-sparse multiplication is calculated by Alg. 1.

Algorithm 1: Pseudo 8-Sparse Multiplication for Class 1

Input: a = (a0 + a1β + a2β
2) + (a3 + a4β + a5β

2)γ, b = 1 + b4βγ + b5β
2γ

Output: c = (c0 + c1β + c2β
2) + (c3 + c4β + c5β

2)γ
where ai, bj , ci ∈ Fp2 (i = 0, · · · , 5, j = 4, 5)

1 t0 ← a0b4, t1 ← a1b5, t2 ← a0 + a1, t3 ← b4 + b5 ; (2m̃2 + 2ã2)

2 t2 ← t2t3 − t0 − t1 ; (m̃2 + 2ã2)

3 c5 ← a5 + t2, c4 ← a4 + t0 + a2b5(α+ 1); (m̃2 + 3ã2 + B̃2)

4 c3 ← a3 + (a2b4 + t1)(α+ 1); (m̃2 + 2ã2 + B̃2)

5 t0 ← a3b4, t1 ← a4b5, t2 ← a3 + a4, t2 ← t2t3 − t0 − t1; (3m̃2 + 3ã2)

6 c0 ← a0 + t2(α+ 1), c1 ← a1 + (t1 + a5b4)(α+ 1); (m̃2 + 3ã2 + 2B̃2)

7 c2 ← a2 + t0 + a5b5(α+ 1); (m̃2 + 2ã2 + B̃2)

return c;

Implementation using Class 2: The twist parameter z for E′ from Table 1
is (α+ 1)−1. Therefore, the sectic twist mapping for Class 2 is given as follows:

E′(Fp2) : y2 = x3 + 26l+1(α+ 1)−1 → E(Fp12) : y2 = x3 + 26l+1,

(x, y) �→ ((α+ 1)1/3x, (α+ 1)1/2y) = (xβ, yβγ).

Then, the line evaluation of the pseudo 8-sparse form can be obtained in affine
coordinate for the rational point P̂ ∈ Ê′(Fp) and Q̂′, T̂ ′ ∈ Ê′(Fp2) as follows:

l̂T̂ ′,Q̂′(P ) = 1− Cγ + EyP̂
−1βγ. (8)

Therefore, Alg. 2 shows the derived pseudo 8-sparse multiplication.
Comparing two classes: Table 2 shows the calculation cost of the sextic

twist, computation of line evaluation/ECA, and pseudo 8-sparse multiplication
for Class 1 and Class 2. It is easily found that Class 1 requires more B̃2 and B̃−1

2

computation, making it costlier than Class 2. This cost incurs due to the twist
coefficient z. The details of cost are given by B̃2 = 2ã1 and B̃−1

2 = 2m̃u1 + 2ã1.
Although this cost is seemingly insignificant than other Fp operations, however,
they appear repeatedly in line evaluation, ECA calculation and sparse multipli-
cation in the Miller’s algorithm for more than 114 times. Therefore, the authors
suggest that using Class 2 is a better choice for efficient pairing implementation.

5 Experimental Result

This section gives details of the experimental implementation. The source code
can be found in Github3. The big integer arithmetic is implemented using the

3 http://github.com/YukiNanjo/BN12_attractive
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where z is a quadratic and cubic non-residue in Fp2 . Applying this mapping,

Q and T can be considered as points Q′(xQ′ , yQ′) = (z1/3xQ, z
1/2yQ) and

T ′(xT ′ , yT ′) = (z1/3xQ, z
1/2yQ) on E′. Let the elliptic curve addition be T ′+Q′ =

R′(xR′ , yR′). Then, the line evaluation and elliptic curve addition (ECA) can be
calculated as

A = 1
xQ′−xT ′

, B = yQ′ − yT ′ , C = AB,D = xT ′ + xQ′ , xR′ = C2 −D

E = CxT ′ − yT ′ , yR′ = E − CxR′ ,

lT ′,Q′(P ) = yP − z−1/6CxP + z−1/2E. (5)

Here all the variables (A,B,C,D,E) are calculated as Fp2 elements. There exists
7 zero coefficients in Eq.(5) which leads to 7-sparse multiplication.

The line evaluation can be more optimized by multiplying y−1
P in both side of

Eq.(5) as yP
−1lT ′,Q′(P ) = 1− z−1/6C(xP yP

−1)+ z−1/2EyP
−1. One of the non-

zero coefficient becomes 1 and it realizes more efficient multiplications. However
comparing with Eq.(5), it is found that they needs a little more calculation for
xP yP

−1 and yP
−1. To minimize the computation overhead of xP yP

−1, let us
consider the following isomorphic mapping.

Ê(Fp) : y
2 = x3 + bẑ → E(Fp) : y

2 = x3 + b, (x, y) �→ (ẑ−1/3x, ẑ−1/2y),

Ê′(Fp2) : y2 = x3 + bzẑ → E′(Fp2) : y2 = x3 + bz, (x, y) �→ (ẑ−1/3x, ẑ−1/2y),

where ẑ is a quadratic and cubic residue in Fp defined as ẑ = (xP y
−1
P )6. Then, a

rational point P̂ ∈ Ê can be represented as P̂ (xP̂ , yP̂ ) = (x3
P y

−2
P , x3

P y
−2
P ). In the

same way, Q̂′, T̂ ′ ∈ Ê′ can be denoted as Q̂′(xQ̂′ , yQ̂′) = (x2
P y

−2
P xQ′ , x3

P y
−3
P yQ′),

T̂ ′(xT̂ ′ , yT̂ ′) = (x2
P y

−2
P xT ′ , x3

P y
−3
P yT ′). Applying these rational points for line

evaluation, xP̂ y
−1

P̂
becomes 1. Therefore, line evaluation can be optimized as

l̂T̂ ′,Q̂′(P̂ ) = y−1

P̂
lT̂ ′,Q̂′(P̂ ) = 1− z−1/6C + z−1/2EyP̂

−1. (6)

The remaining 7 zero and 1 one coefficients in Eq.(6) lead to an efficient multi-
plication called pseudo 8-sparse multiplication.

4.2 Line Evaluation for the Proposed Attractive Classes

Here this paper describes the line evaluation for two classes of BN curves. In
what follows, the cost of the multiplication, constant multiplication, squaring,
addition/subtraction and inversion over Fpk are represented as m̃k, m̃uk, s̃k, ãk
and ĩk respectively. The costs of multiplication by (α + 1) and (α + 1)−1 are
especially denoted as B̃2 and B̃−1

2 .
Implementation using Class 1: It is found that the sextic twist parameter

z is (α+1) since the twisted curve of Class 1 is E′ : y2 = x3+26l−1(α+1) from
Table 1. Therefore, the sextic twist mapping for Class 1 is given as follows:

E′(Fp2) : y2 = x3 + 26l−1(α+ 1) → E(Fp12) : y2 = x3 + 26l−1,

(x, y) �→ ((α+ 1)−1/3x, (α+ 1)−1/2y) = ((α+ 1)−1xβ2, (α+ 1)−1yβγ).
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Then, the line evaluation of the pseudo 8-sparse form can be obtained for the
rational point P̂ ∈ Ê′(Fp) and Q̂′, T̂ ′ ∈ Ê′(Fp2) as follows:

l̂T̂ ′,Q̂′(P ) = 1− (α+ 1)−1Cβ2γ + (α+ 1)−1EyP̂
−1βγ. (7)

Finally, the pseudo 8-sparse multiplication is calculated by Alg. 1.

Algorithm 1: Pseudo 8-Sparse Multiplication for Class 1

Input: a = (a0 + a1β + a2β
2) + (a3 + a4β + a5β

2)γ, b = 1 + b4βγ + b5β
2γ

Output: c = (c0 + c1β + c2β
2) + (c3 + c4β + c5β

2)γ
where ai, bj , ci ∈ Fp2 (i = 0, · · · , 5, j = 4, 5)

1 t0 ← a0b4, t1 ← a1b5, t2 ← a0 + a1, t3 ← b4 + b5 ; (2m̃2 + 2ã2)

2 t2 ← t2t3 − t0 − t1 ; (m̃2 + 2ã2)

3 c5 ← a5 + t2, c4 ← a4 + t0 + a2b5(α+ 1); (m̃2 + 3ã2 + B̃2)

4 c3 ← a3 + (a2b4 + t1)(α+ 1); (m̃2 + 2ã2 + B̃2)

5 t0 ← a3b4, t1 ← a4b5, t2 ← a3 + a4, t2 ← t2t3 − t0 − t1; (3m̃2 + 3ã2)

6 c0 ← a0 + t2(α+ 1), c1 ← a1 + (t1 + a5b4)(α+ 1); (m̃2 + 3ã2 + 2B̃2)

7 c2 ← a2 + t0 + a5b5(α+ 1); (m̃2 + 2ã2 + B̃2)

return c;

Implementation using Class 2: The twist parameter z for E′ from Table 1
is (α+ 1)−1. Therefore, the sectic twist mapping for Class 2 is given as follows:

E′(Fp2) : y2 = x3 + 26l+1(α+ 1)−1 → E(Fp12) : y2 = x3 + 26l+1,

(x, y) �→ ((α+ 1)1/3x, (α+ 1)1/2y) = (xβ, yβγ).

Then, the line evaluation of the pseudo 8-sparse form can be obtained in affine
coordinate for the rational point P̂ ∈ Ê′(Fp) and Q̂′, T̂ ′ ∈ Ê′(Fp2) as follows:

l̂T̂ ′,Q̂′(P ) = 1− Cγ + EyP̂
−1βγ. (8)

Therefore, Alg. 2 shows the derived pseudo 8-sparse multiplication.
Comparing two classes: Table 2 shows the calculation cost of the sextic

twist, computation of line evaluation/ECA, and pseudo 8-sparse multiplication
for Class 1 and Class 2. It is easily found that Class 1 requires more B̃2 and B̃−1

2

computation, making it costlier than Class 2. This cost incurs due to the twist
coefficient z. The details of cost are given by B̃2 = 2ã1 and B̃−1

2 = 2m̃u1 + 2ã1.
Although this cost is seemingly insignificant than other Fp operations, however,
they appear repeatedly in line evaluation, ECA calculation and sparse multipli-
cation in the Miller’s algorithm for more than 114 times. Therefore, the authors
suggest that using Class 2 is a better choice for efficient pairing implementation.

5 Experimental Result

This section gives details of the experimental implementation. The source code
can be found in Github3. The big integer arithmetic is implemented using the

3 http://github.com/YukiNanjo/BN12_attractive
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Table 3. Computational Environment

CPU Memory Compiler OS Language Library

Intel(R) Core(TM)
8GB GCC 4.2.1

macOS High
C

GMP
i7-7567U CPU @ 3.50GHz Sierra 10.13.6 ver 6.1.2 [11]

Table 4. Proposed classes of the parameter at the 128-bit security level (four types)

Type χ HW BN curve Twisted curve

(i) Class14 2114 + 2101 − 214 − 1 4 y2 = x3 + 32 y2 = x3 + 32(α+ 1)

(ii) Class2 2114 + 284 − 253 − 1 4 y2 = x3 + 2 y2 = x3 + 2(α+ 1)−1

(iii) Class1 2114 + 278 + 251 − 238 − 236 − 1 6 y2 = x3 + 32 y2 = x3 + 32(α+ 1)

(iv) Class2 2114 + 294 + 255 − 253 − 23 − 1 6 y2 = x3 + 2 y2 = x3 + 2(α+ 1)−1

Table 5. Operation count and execution time using proposed classes

Type
Pairing Time Operation count

operations [ms] M S A I

(i) Class1
Miller’s Opt-ate 5.17 1696 9062 35770 125
Alg. χ-ate 4.88 1658 8893 35241 120
Final Exp. 4.79 1428 8131 43102 1

(ii) Class2
Miller’s Opt-ate 4.88 1201 9061 34774 125
Alg. χ-ate 4.75 1183 8892 34285 120
Final Exp. 4.71 1428 8131 43102 1

(iii) Class1
Miller’s Opt-ate 5.24 1728 9234 36298 129
Alg. χ-ate 5.03 1674 8979 35505 122
Final Exp. 4.94 1428 8455 44446 1

(iv) Class2
Miller’s Opt-ate 5.04 1217 9233 35270 129
Alg. χ-ate 4.82 1191 8978 34533 122
Final Exp. 4.86 1428 8455 44446 1

6 Conclusion

This paper has proposed two attractive classes of BN curves for the efficient
pairing implementation which result in not only constructing an efficient tower
of the extension field but also instantaneously determining BN curve, its twisted
curves and obvious generator points. Moreover, this paper clearly describes that
the implementation difference of the Miller’s algorithm between two classes ap-
plying pseudo 8-sparse multiplication. The authors conclude that Class 2 curve
(χ ≡ 11 (mod 12)) is a better choice for efficient pairing. As a future work, the
authors would like to examine the similar technique for other pairing-friendly
curves.
4 Proposed by Barbulesuc et al. [3].
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Algorithm 2: Pseudo 8-Sparse Multiplication for Class 2

Input: a = (a0 + a1β + a2β
2) + (a3 + a4β + a5β

2)γ, b = 1 + b3γ + b4βγ
Output: c = (c0 + c1β + c2β

2) + (c3 + c4β + c5β
2)γ

where ai, bj , ci ∈ Fp2 (i = 0, · · · , 5, j = 4, 5)
1 t0 ← a0b3, t1 ← a1b4, t2 ← a0 + a1, t3 ← b3 + b4; (2m̃2 + 2ã2)

2 t2 ← t2t3 − t0 − t1; (m̃2 + 2ã2)

3 c4 ← a4 + t2, c3 ← a3 + t0 + a2b4(α+ 1); (m̃2 + 3ã2 + B̃2)

4 c5 ← a5 + t1 + a2b3; (m̃2 + 2ã2)

5 t0 ← a3b3, t1 ← a4b4, t2 ← a3 + a4, t2 ← t2t3 − t0 − t1; (3m̃2 + 3ã2)

6 c2 ← a2 + t2, c1 ← a1 + t0 + a5b4(α+ 1); (m̃2 + 3ã2 + B̃2)

7 c0 ← a0 + (t1 + a5b3)(α+ 1); (m̃2 + 2ã2 + B̃2)

return c;

Table 2. Calculation cost of the sextic twist, line evaluation and ECA and pseudo
8-sparse multiplication for proposed classes

Type
Sextic Line evaluation and ECA Pseudo 8-sparse

twist T̂ �= Q̂ T̂ = Q̂ multiplication

Class 1 2B̃−1
2

3m̃2 + m̃u2 + s̃2 3m̃2 + m̃u2 + 2s̃2
10m̃2 + 17ã2 + 5B̃2

+6ã2 + ĩ2 + 2B̃−1
2 +7ã2 + ĩ2 + 2B̃−1

2

Class 2 0
3m̃2 + m̃u2 + s̃2 3m̃2 + m̃u2 + 2s̃2

10m̃2 + 17ã2 + 3B̃2
+6ã2 + ĩ2 +7ã2 + ĩ2

mpz t data type of GMP [11] library. In what follows, multiplication, squaring,
addition/subtraction/negation and inversion in Fp are denoted as M , S, A and
I respectively. This paper assumes that M = 5A, S = 4.5A and I = 30A for per-
formance caparison (based on the average time of 1 million Fp operations). The
pairings are implemented using pseudo 8-sparse multiplication for the Miller’s
algorithm (see Sect.4) and Fuentes-Castaneda et al.’s [10] final exponentiation
algorithm. Table 3 shows the computational environment. The parameters of the
proposed classes of the BN curve at the 128-bit security level are given in Table 4.
Table 5 shows the operation count based on the counter in the implementation
code. The result also shows the average execution time of 100 pairings.

Table 5 shows that Miller’s algorithm using Class 2 is more than 3.9% ef-
ficient than Class 1. It is also found that the performance of Class 2 for the
parameter of the Hamming weight 6 is close to the Class 1 with the Hamming
weight 4. According to Table 5, the efficiency precedence can be expressed as
(ii)>(i)≈(iv)>(iii). Therefore, the authors conclude that Class 2 is a better
choice for efficient pairing implementation. The total cost in execution time is
subject to the environment. However, the time cost is coherent with the opera-
tion count.
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Table 3. Computational Environment

CPU Memory Compiler OS Language Library

Intel(R) Core(TM)
8GB GCC 4.2.1

macOS High
C

GMP
i7-7567U CPU @ 3.50GHz Sierra 10.13.6 ver 6.1.2 [11]

Table 4. Proposed classes of the parameter at the 128-bit security level (four types)

Type χ HW BN curve Twisted curve

(i) Class14 2114 + 2101 − 214 − 1 4 y2 = x3 + 32 y2 = x3 + 32(α+ 1)

(ii) Class2 2114 + 284 − 253 − 1 4 y2 = x3 + 2 y2 = x3 + 2(α+ 1)−1

(iii) Class1 2114 + 278 + 251 − 238 − 236 − 1 6 y2 = x3 + 32 y2 = x3 + 32(α+ 1)

(iv) Class2 2114 + 294 + 255 − 253 − 23 − 1 6 y2 = x3 + 2 y2 = x3 + 2(α+ 1)−1

Table 5. Operation count and execution time using proposed classes

Type
Pairing Time Operation count

operations [ms] M S A I

(i) Class1
Miller’s Opt-ate 5.17 1696 9062 35770 125
Alg. χ-ate 4.88 1658 8893 35241 120
Final Exp. 4.79 1428 8131 43102 1

(ii) Class2
Miller’s Opt-ate 4.88 1201 9061 34774 125
Alg. χ-ate 4.75 1183 8892 34285 120
Final Exp. 4.71 1428 8131 43102 1

(iii) Class1
Miller’s Opt-ate 5.24 1728 9234 36298 129
Alg. χ-ate 5.03 1674 8979 35505 122
Final Exp. 4.94 1428 8455 44446 1

(iv) Class2
Miller’s Opt-ate 5.04 1217 9233 35270 129
Alg. χ-ate 4.82 1191 8978 34533 122
Final Exp. 4.86 1428 8455 44446 1

6 Conclusion

This paper has proposed two attractive classes of BN curves for the efficient
pairing implementation which result in not only constructing an efficient tower
of the extension field but also instantaneously determining BN curve, its twisted
curves and obvious generator points. Moreover, this paper clearly describes that
the implementation difference of the Miller’s algorithm between two classes ap-
plying pseudo 8-sparse multiplication. The authors conclude that Class 2 curve
(χ ≡ 11 (mod 12)) is a better choice for efficient pairing. As a future work, the
authors would like to examine the similar technique for other pairing-friendly
curves.
4 Proposed by Barbulesuc et al. [3].
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Abstract. NPP (Nuclear Power Plant) Operators have approached the problem 
of cyber security by simply keep up with the never-ending stream of new vul-
nerability alerts from suppliers and groups like ICS-CERT. Keeping Cyber Se-
curity Compliance, NPP Owner must patch vulnerabilities according to their 
CVSS Score. In fact, NPP Owner often has to deal with hundreds of vulnera-
bilities, which is not a trivial task to carry out. Unfortunately, the CVSS Score 
has been shown to be poor indicator for actual exploitation in NPP. This paper 
analyzes Vulnerability Assessment Methodology about Critical digital asset in 
NPP. And then give an effective methodology. It approaches the cyber security 
regulations of NPP from a technical vulnerability point of view, where any giv-
en Critical Digital Asset can be assessed for vulnerabilities.

Keywords: Vulnerability Assessment, CVSS, Nuclear Power Plant.

1 Introduction

NPP (Nuclear Power Plant) Operators have approached the problem of cyber security 
by simply keep up with the never-ending stream of new vulnerability alerts from sup-
pliers and groups like ICS-CERT. Keeping Cyber Security Compliance, NPP Owner 
must patch vulnerabilities according to their CVSS (Common Vulnerability Scoring 
System) Score. In fact, NPP Owner often has to deal with hundreds of vulnerabilities, 
which is not a trivial task to carry out. Unfortunately, the CVSS Score has been 
shown to be poor indicator for actual exploitation in NPP.
There are two big problems with CVSS in the NPP. First, it doesn’t tell us much 
about the NPP impact of vulnerability. Second, the scores published in official advi-
sories are often just plain wrong, more importantly. It is not considered by environ-
ment of NPP. CVSS is meant to provide an abbreviated summary of vulnerability. 
Chiefly it is a means to quickly convey how serious a vulnerability is by showing both 
how easy a vulnerability is to exploit, as well as what the impacts of exploitation are.
Faced with regulatory commitments, NPP Operators have approached the problem of 
cyber security by simply attempting to apply nation’s committed catalog of cyber 
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which proved ineffective. So in v3.0, the Authentication value is removed and the 
attacker’s authority to attack is presented as a new value. [2]
Scope The concepts of confidentiality, integrity, availability were limited to the ef-
fects on the host operating system, and new criteria for the extent of the damage were 
suggested to allow evaluation of whether the extent of damage is limited or derivable.
User Interaction CVSS added a new value about whether the users need to interact 
with each other for the success of the attack so attacker could suggest whether the 
user’s intervention is needed or not. [3]
CVSS v3.0 is divided into three Metrics that Base, Temporal and Environmental Met-
rics called B.T.E Metrics. Each Metrics’ score consists of 0 to 10 points that indicate 
severity of vulnerability. [4]

Table 1. Components of CVSS

Base Metric It is calculated by vulnerability’s intrinsic characteristic that network 
connectivity, authentication, access complexity and possibility of impacting on C.I.A
(confidentiality, integrity, availability). Base Metric is composed of two sets of met-
rics: the Exploitability metrics and the Impact metrics. [3]

Table 2. Base Metric Diagram

2

security requirements to every Critical Digital Asset under evaluation. When new 
Vulnerabilities are discovered, the issue is documented in the CAP (Corrective Action 
Program). CAP Evaluations should consider the attack vectors associated with the 
vulnerabilities.
There are many ways to describe vulnerabilities depending on the organization, pro-
grammatic policies and procedures, supply chain, asset or characteristics. Vulnerabili-
ties are weaknesses in information system, system procedures, controls, or implemen-
tations the can be exploited by a threat source. Predisposing conditions are properties 
of the organization, mission/business process, architecture, or information systems 
that contribute to the likelihood of a threat event. [1]
Although software weakness and flaws are technical vulnerabilities, they are a result 
of the supply chain, and are mitigated using programmatic security methods such as 
monitoring security advisories, patch management, and anti-malware. Most of the 
sources describe these types of vulnerabilities and seek to identify specific weakness 
and flaws. These types of specific software and hardware vulnerabilities are discov-
ered after components are deployed in the field. Every day, a number of specific 
hardware, firmware, or application software vulnerabilities are identified such as ICS-
CERT Advisory. New vulnerabilities are either discovered or introduced every day, 
making it impossible to predict future specific vulnerabilities.
A more efficient and effective approach to vulnerability assessment methodology 
is required. It can be used to demonstrate effective vulnerability assessment for 
any CDA or functional group of CDAs selected for evaluation by facility operator

2 Related Research

2.1 Definition of CVSS

CVSS is one of a vulnerability assessments method that developed under the United 
States’ NIAC (National Infrastructure Assurance Council). This rating system is de-
signed to provide open and universally standard severity ratings of software vulnera-
bilities. It allows security administrators to effectively respond by classifying the 
severity of the vulnerability and determining the priority of the emergency response.

2.2 CVSS v3.0

CVSS v1.0 and v2.0 is early version of the rating system. CVSS v2.0 is classified into 
Base Metric, Temporal Metric, and Environmental Metric. Base Metric, which has the 
greatest impact on vulnerability scores, is divided into Attack Vector, Access Com-
plexity, Authentication, Confidentiality, Availability, and Integrity. 
However, in the case of v2.0, there were limitations in conducting detailed evaluation 
on items such as Access Complexity and Authentication. So CVSS v3.0 complement-
ed the existed v2.0 issues, and the improvements are as follows.
Privileges Required Authentication issues was introduced to measure how many 
times an attacker would have to be authenticated to penetrate the target system, but 
NVD (National Vulnerability Database) announced that 90% or more was None, 
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severity of vulnerability. [4]
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None (No files to modify) None

Availability
High (Able to fully deny access to resources)
Low (Able to deny some access to resources)
None (No impact)

High
Low
None

Confidentiality It measures the impact to the confidentiality of the information re-
sources managed by a software component due to a successfully exploited vulnerabil-
ity.
Integrity It refers to the trustworthiness and veracity of information.
Availability It refers to the loss of availability of the impacted component itself, such 
as a networked service.

Temporal Metric This metrics measure the availability of attack code or exploit 
techniques, the level of vulnerability treatment and the reliability of the vulnerability. 
The level is calculated to reflect the availability of attack code and the value changes 
over time. [3]

Table 5. Temporal metrics

Division Metric Value Severity

Exploit Code 
Maturity

Not defined
High
Functional(Functional exploit code available)
PoC (Some code available)
Unproven(No exploit code available)

N/A
High
Medium
Medium-Low
Low

Remediation Level

Not defined
Unavailable
Workaround (Unofficial solution ex: create 
an own patch etc.)
Temporary Fix (Official but temporary ex: 
hotfix, tool etc.)
Official Fix

N/A
High
Medium

Medium-Low
Low

Report Confidence

Not defined
Confirmed
Reasonable
Unknown

N/A
Medium
Medium-Low
Low

Exploit Code Maturity It measures the likelihood of the vulnerability being attacked, 
and is typically based on the current state of exploit techniques and exploit code 
availability.
Remediation Level It is the level of security controls that the less official and perma-
nent a fix, the higher the vulnerability scored.
Report Confidence The more vulnerability is validated by the vendor or other reputa-
ble sources, the higher the score.

4

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, 
which we refer to formally as the vulnerable component. Therefore, each of the ex-
ploitability metrics listed below should be scored relative to the vulnerable compo-
nent, and reflect the properties of the vulnerability that lead to a successful attack. [3]

Table 3. Exploitability metrics

Division Metric Value Severity

Attack Vector

Network (Remotely Exploitable)
Adjacent (Same Network)
Local (Not bound to network stack)
Physical (Need physical access)

High
Low-high
Medium
Low

Access Complexity
Low (Do not need any access conditions)
High (Need several steps to access a target)

High
Low

Privileges Required
None (Unauthorized privileges) 
Low (Basic user capabilities)
High (Administrative capabilities)

High
Medium
Low

User Interaction
None (Automatically exploitable)
Required (Need specific actions)

High
Low

Scope of Damage
Unchanged (Limited to same authority)
Changed (Different authority)

Low
High

Attack Vector value will be larger the more remote (logical, and physical) an attacker 
can be in order to exploit the vulnerable component.
Access Complexity describes the conditions beyond the attacker’s control that must 
exist in order to exploit the vulnerability.
Privileges Required It describes the level of privileges an attacker must possess be-
fore successfully exploiting the vulnerability.
User Interaction It determines whether the vulnerability can be exploited solely at the
w ill of the attacker, or whether a separate user must participate in some manner.
Scope of Damage It is the scope that whether the damage is independent network or 
spread to wide network. [5]

The Impact metrics refer to the properties of the impacted component. Whether a 
successfully exploited vulnerability affects one or more components, the impact met-
rics are scored according to the component that suffers the worst outcome that is most 
directly and predictably associated with a successful attack

Table 4. Impact metrics

Division Metric Value Severity

Confidentiality
High (Total loss of data)
Low (Some loss of data)
None (No loss of data)

High
Low
None

Integrity
High (Modify all files)
Low (Need some control for modification)

High
Low
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over time. [3]
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hotfix, tool etc.)
Official Fix

N/A
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Not defined
Confirmed
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Exploit Code Maturity It measures the likelihood of the vulnerability being attacked, 
and is typically based on the current state of exploit techniques and exploit code 
availability.
Remediation Level It is the level of security controls that the less official and perma-
nent a fix, the higher the vulnerability scored.
Report Confidence The more vulnerability is validated by the vendor or other reputa-
ble sources, the higher the score.
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7

ering these characteristics, NEI (Nuclear Energy Institute) has announced a case for 
nuclear industry using CVSS and NVD.
ALNOTS (Alert Notifications System) It is automated system that managed by INPO 
(Institute of Nuclear Power Operations) that provide nuclear licensees a uniform and 
consistent means to ensure cyber security threat notifications and vulnerabilities are 
properly screened. Also, ensures licensees are notified of alerts and advisories that 
require further evaluation or action.

Table 7. US NPP’s Assessment Result example [5] 

CDA Grouping Microsoft Windows
Vulnerability 
Description

Microsoft Windows Graphics Component Flaws

Vulnerability 
Ref  Number

CVE-2017-0144

Applicable in 
Attack Vectors

A Local or remote user can create content with specially crafted 
embedded fonts that will trigger a flaw.

Security Controls
Data diode or air gap isolation for remote user.
Local user exploitation is addressed y CDAs being located in Vital 
area or room under continuous surveillance.

Required to exploit 
the vulnerability 

Physical CDA access

Defense-in-depth for 
corrective actions

No remedial or corrective actions required for CDAs behind a data 
diode or air-gapped isolated because exploitation of this vulnerability 
requires physical access.

This case helped US nuclear licensees conduct effective vulnerability management. It 
also provided direction on how to manage the vulnerability of the sensitive nuclear 
control system. [1]

3 The proposed methodology

3.1 Background

As shown in the case of the US, an effective evaluation system for the NPPs is also 
required in the domestic nuclear power field. NPPs are one of the main infrastructures
of the country and causes serious damage when it is attacked. To prevent the damage 
caused by unauthorized change of malicious SW and unpredictable result of the 
change of logic control device (set-point, shut down, etc.), we analyze the vulnerabil-
ity that is continuously announced, and evaluation system should be made considering 
these characteristics. 

6

Environmental Metric Environmental Metric is calculated as the magnitude of the 
damage, the extent of the damage, and the security requirements as the vulnerability 
succeeds in the attack. This metrics enable the analyst to customize the CVSS score 
depending on the importance of the affected IT asset to a user’s organization.
Therefore, this metrics need to be considered all the metrics as mentioned above. [3]

2.3 US Nuclear Power Plant’s Vulnerability Assessment 

In general, IT systems and I&C systems have differences in requirements in the areas 
of communication, accessibility and operation, so it should be considered differently
such as deriving vulnerability items. Likewise ICS-CERT a support group for the 
NCCIC (National Cyber Security and Communications Integration Center) analyzes 
and announces industry-specific vulnerabilities. 
Secure and safe operation of critical NPPs is very important for the national security, 
human health and safety and economic vigor of the nations. The safe operation, secu-
rity and reliability of this critical infrastructure are becoming a vital national concern. 
Management of security vulnerabilities is of great importance as cyber infringement 
accidents in national infrastructures could be large and cause social disruption. Safety 
is most significant issue in most of the NPP (Nuclear Power Plants system), they are 
aged and could not be changed easily.
NPP I&C systems can be grouped into two categories: safety CDAs (Critical Digital 
Assets) and non-safety CDAs. Safety CDAs can be further graded as either safety-
critical or important-to-safety. Safety systems require higher reliability, functionality, 
and availability than non-safety systems. For example, PLC which is grouped into 
safety CDA is a small-scale industrial computer designed to withstand the various 
environments of the infrastructure operation site. PLC uses control logic or control 
program to perform operations related to input/output devices and mounts RTOS such 
as vxworks.

Table 6. US NPP’s Assessment method [5] 

CVE-2017-0144 is vulnerability in Microsoft that allows local or remote users to 
write malicious scripts using Windows Fonts files. In a general IT system, the vulner-
ability can be solved with a simple patch, but it is not easy to apply to NPPs. Consid-
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As shown in the case of the US, an effective evaluation system for the NPPs is also 
required in the domestic nuclear power field. NPPs are one of the main infrastructures
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CDA Location
System connectivity

VA(Vital Area)
Independent Network

CDA Attributes
(type2)

Account Management
Audit Function
Encryption Function
Media connectivity
Communication connectivity
Application Service

Yes(Admin, user)
No(Log etc.)
Yes(TCP.SSH etc.)
Yes(USB, CD etc.)
No(Independent NW)
Yes(Markvie)

Applicability

CVE Information
Applicable attack vector
Applied security control
Exploit methods
corrective action for Defense-in-depth

CVE-2017-8487
Wireless connectivity
No use remote service
Physical or remote
Need Approvals

CDA Attributes (type 1) refers to CDA’s network connectivity and configuration. 
CDA Attributes (type 2) refers to CDA’s hardware and software characteristic that 
could be handled by end-user.
Applicability refers to CVE information such as release date, summary of the code. 
Also, it finds out exploit methods that which function would be exploitable to assets 
such as remote service, physical access, supply chain, portable media, wired connec-
tivity etc.

Table 10. Score arithmetic expression [3]

Division Example

Formula

* Base Score = (.6 * Impact + .4 * Exploitability – 1.5) * f(Impact)
* Impact = 10.41 * (1 – (1 – ConfImpact) * (1 – IntegImpact) * (1 – AvailImpact)
* Exploitability = 20 * Access Complexity * Authentication * Access Vector
* f(Impact) = 0 if Impact = 0; 1.176 otherwise

Weight

* Access Complexity = High : 0.35, Medium : 0.61, Low : 0.71
* Authentication = None : 0.704, Single : 0.56, Multiple : 0.45
* Access Vector = Local : 0.395, Adjacent : 0.646, Network : 1
* Confidentiality = None : 0 , Partial : 0.275, Complete : 0.660
* Integrity = None : 0 , Partial : 0.275, Complete : 0.660
* Availability =  : None : 0 , Partial : 0.275, Complete : 0.660

As mentioned on the 3.1 Background, NPPs are one of the main infrastructures of the 
country and causes serious damage when it is attacked. Therefore NPPs’ information 
should be handled very carefully, which means weight of confidentiality, integrity, 
and availability should be considered critical. So NPPs’ C.I.A marks “Complete” as
default.

Mitigate vulnerability. We have reported to vendor and CDA manager the results
and gave them technical support. Through these works, licensees could make high 
attack barrier, prevent zero-day attacks, and enhance security consciousness.

8

3.2 Assessment methods

CVSS is a system for assessing the risk by scoring the evaluation items for security 
vulnerabilities. Unlike the US, it is not easy to introduce automated systems into the 
Korean nuclear control system. Also we do not have vulnerability database that able 
to integrate management. NVD is integrated database that under the responsibility of 
the Department of Homeland Security and NIST (National Institute of Standards and 
Technology) is running the NVD. NVD has a large number of vulnerability codes 
called CVE. So using NVD, we conducted four stages of vulnerability assessment. [2]

Table 8. Vulnerability assessment workflow

Collect information we have monitored vulnerability status that specific to CDA 
using NVD that records and manages 14,000 new vulnerabilities per year.
NVD includes well-known vulnerabilities and mitigation, and provides useful data 
regarding digital I&C cyber security. When collecting vulnerability from this data-
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“Critical (CVSS≥7.0)” from NVD. It showed us that approximately 8,400 vulnerabil-
ities are specific to CDA.
Re-evaluation Then, we identified hardware and software characteristic and collected 
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KEPCO KDN’s own impact analysis table. It is composed of communication inter-
face, protocol, CDA locations, system connectivity and OS security management 
function etc. Using those, the CVSS score is recalculated considering the basic attrib-
utes of the CDA, the environment and the importance of the assets. And an action 
target that classified as “Critical (CVSS≥7.0)” from NVD is about 110 vulnerabili-
ties.

Table 9. KEPCO KDN’s impact analysis table (Example)

Division Metric Value Example
CDA Attributes
(type 1)

Communication Interface
Communication Protocol

RS-232C
Modbus/TCPIP
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CDA Location
System connectivity

VA(Vital Area)
Independent Network

CDA Attributes
(type2)

Account Management
Audit Function
Encryption Function
Media connectivity
Communication connectivity
Application Service

Yes(Admin, user)
No(Log etc.)
Yes(TCP.SSH etc.)
Yes(USB, CD etc.)
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Yes(Markvie)

Applicability

CVE Information
Applicable attack vector
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corrective action for Defense-in-depth
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No use remote service
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Need Approvals
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CDA Attributes (type 2) refers to CDA’s hardware and software characteristic that 
could be handled by end-user.
Applicability refers to CVE information such as release date, summary of the code. 
Also, it finds out exploit methods that which function would be exploitable to assets 
such as remote service, physical access, supply chain, portable media, wired connec-
tivity etc.

Table 10. Score arithmetic expression [3]

Division Example

Formula

* Base Score = (.6 * Impact + .4 * Exploitability – 1.5) * f(Impact)
* Impact = 10.41 * (1 – (1 – ConfImpact) * (1 – IntegImpact) * (1 – AvailImpact)
* Exploitability = 20 * Access Complexity * Authentication * Access Vector
* f(Impact) = 0 if Impact = 0; 1.176 otherwise

Weight

* Access Complexity = High : 0.35, Medium : 0.61, Low : 0.71
* Authentication = None : 0.704, Single : 0.56, Multiple : 0.45
* Access Vector = Local : 0.395, Adjacent : 0.646, Network : 1
* Confidentiality = None : 0 , Partial : 0.275, Complete : 0.660
* Integrity = None : 0 , Partial : 0.275, Complete : 0.660
* Availability =  : None : 0 , Partial : 0.275, Complete : 0.660

As mentioned on the 3.1 Background, NPPs are one of the main infrastructures of the 
country and causes serious damage when it is attacked. Therefore NPPs’ information 
should be handled very carefully, which means weight of confidentiality, integrity, 
and availability should be considered critical. So NPPs’ C.I.A marks “Complete” as
default.

Mitigate vulnerability. We have reported to vendor and CDA manager the results
and gave them technical support. Through these works, licensees could make high 
attack barrier, prevent zero-day attacks, and enhance security consciousness.
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electromagnet is called excitation. The exciter receives the alternating current from 
the excitation transformer, outputs the rectified current through the phase control, and 
supplies it to the generator excitation power source. In order to control the generator 
voltage automatically, the generator voltage and current signals are supplied to the 
input of the controller.

MMI (Man-machine Interface) is generally installed on MCR (Main Control 
Room) and excitation room. Also MMI is composed of remote and local PC based on 
Linux. MMI has vulnerability, code number CVE-2018-10124, that local users could 
cause DoS (Denial of Service) due to validation errors.

Table 13. CDA Attack Vector

If attacker uses this vulnerability for exploit, physical access would be needed. But 
Excitation system has security controls that anyone who access should get approval in 
advance. And this system has physical control which is port seal and cabinet locking 
devices. Only authorized persons could access MMI. Any other CDA attributes can 
impact on vulnerability therefore CVE-2018-10124 could not be abused by attacker.

Table 14. Re-Score Summary

Code Base-Score Re-Score
CVE-2018-10124 6.9 5.9
Attack Vector Local Local
Access Complexity Medium High
Authentication
(UI/PR)

None Multiple

C.I.A Complete Complete
- There is no connection point with other system, only TCP/IP is used internally
- Type 2 attributes are supported and periodic management is conducted
- Physical access control : port seal, cabinet locking devices etc.

10

3.3 Case.1 (PLC : Automatic Seismic Trip System)

This system monitors seismic sensor signals to protect the reactor when large-scale 
seismic waves occur, and automatically stops the reactor when the sensor signal 
reaches the set points. It contains several sub system and PLC has QNX operate sys-
tem. QNX has vulnerability, code number CVE-2004-1390, that remote attackers 
could execute arbitrary code.

Table 11. CDA Attack Vector

If attacker uses this vulnerability for exploit, remote access would be needed. This 
CDA does not use remote service. So Attack Vector has checked as Local. There is no 
account management function in PLC so that “Authentication” is N/A. N/A has same 
meaning as Multiple. Because Multiple checks means the highest level of security. 
Also any other CDA attributes can impact on vulnerability therefore CVE-2004-1390
could not be abused by attacker.

Table 12. Re-Score Summary

Code Base-Score Re-Score
CVE-2004-1390 10 6.9
Attack Vector Network Local
Access Complexity Low High
Authentication
(UI/PR)

None Multiple

C.I.A Complete Complete
- There is no connection point with other system, only TCP/IP is used internally
- Type 2 attributes are not supported : N/A
- Physical access control : port seal, cabinet locking devices etc.

3.4 Case.2 (Man-Machine Interface : Excitation System)

The exciter is a device that supplies DC power to the rotor of the generator, and the 
means of supplying the DC power to the main generator and forming the rotor into an 
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electromagnet is called excitation. The exciter receives the alternating current from 
the excitation transformer, outputs the rectified current through the phase control, and 
supplies it to the generator excitation power source. In order to control the generator 
voltage automatically, the generator voltage and current signals are supplied to the 
input of the controller.

MMI (Man-machine Interface) is generally installed on MCR (Main Control 
Room) and excitation room. Also MMI is composed of remote and local PC based on 
Linux. MMI has vulnerability, code number CVE-2018-10124, that local users could 
cause DoS (Denial of Service) due to validation errors.

Table 13. CDA Attack Vector

If attacker uses this vulnerability for exploit, physical access would be needed. But 
Excitation system has security controls that anyone who access should get approval in 
advance. And this system has physical control which is port seal and cabinet locking 
devices. Only authorized persons could access MMI. Any other CDA attributes can 
impact on vulnerability therefore CVE-2018-10124 could not be abused by attacker.

Table 14. Re-Score Summary

Code Base-Score Re-Score
CVE-2018-10124 6.9 5.9
Attack Vector Local Local
Access Complexity Medium High
Authentication
(UI/PR)

None Multiple

C.I.A Complete Complete
- There is no connection point with other system, only TCP/IP is used internally
- Type 2 attributes are supported and periodic management is conducted
- Physical access control : port seal, cabinet locking devices etc.
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4 Conclusions

CVSS is meant to provide an abbreviated summary of vulnerability. It is means to 
quickly convey how serious a vulnerability is by showing both how easy a vulnerabil-
ity is to exploit, as well as what the impacts of exploitation are. 
There are problems with CVSS in the Nuclear Power Plant. It doesn’t tell us much 
about the Nuclear Power Plant impact of vulnerability. More importantly, the scores,
published in official advisories, are not reflecting CDA Attributes.
This paper proposes efficient methodology to assess CDA’s vulnerability in NPP. Use 
of CDA Attributes and CDA’s Exploitability greatly enhance the actual implementa-
tion of effort in assessment.
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Abstract. Nowadays, the security issues on programmable logic con-
trollers (PLCs) are rising as devices are connected through the network
so that a single compromised device can influence the entire ICS/SCADA
system. However, we are facing the major following obstacle that makes
it hard to detect operation threats (i.e., anomaly) from the diverse types
of PLCs due to their manufacturers’ design and implementation.
In this paper, we propose a novel and general anomaly detection method
with a vendor-free property. For the generality, our method analyzes the
network traffic transferred from each PLC, which depends on their pro-
gram logic rather than their manufacturer. In addition, we employ the
recurrent neural network (RNN) models along with an automated hy-
perparameter optimization. We have successfully detected sophisticated
cyber attacks (e.g., PLC-blaster [1]) by extensive evaluations using the
datasets from real-world ICS and the testbed.
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1 Introduction

As the cyber-attacks are moving their attention to the critical infrastructures,
they nowadays target to the industrial control system (ICS) or supervisory con-
trol and data acquisition (SCADA) systems [2] which are mainly operated by a
programmable logic controller (PLC), a specialized computer that controls and
operates manufacturing process and machinery [2]. For instance, the real cyber-
attack, called Stuxnet damaged the physical facilities of Iran nuclear system by
modifying the Siemens PLCs logic in 2010 [3]. Moreover, its variation struck one
of the largest power plants in Iran in 2012. In the literature, Klick et al. [4] and
Spenneberg et al. [1] demonstrate the worms can compromise and spread them-
selves among the PLCs. In the long view, there will be an advanced persistent
threat (APT) which shows targeted sophisticated behavior to avoid detection.

While the CPS (or ICS) encounters the various cyber-security threats [5],
there have been only a few security considerations [6][7][8]. The difficulty arises
from that the PLCs vendors (i.e., Siemens, GE, Rockwell, and LSIS) have the
distinct operating manners (e.g., Ethernet protocol), for those reasons, hardly
we could find a common method that deals with every type of PLCs.
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Spenneberg et al. [1] demonstrate the worms can compromise and spread them-
selves among the PLCs. In the long view, there will be an advanced persistent
threat (APT) which shows targeted sophisticated behavior to avoid detection.

While the CPS (or ICS) encounters the various cyber-security threats [5],
there have been only a few security considerations [6][7][8]. The difficulty arises
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which covers the time-series features on the network traffic using RNN models.
Several other works have been proposed a novel analysis method with recurrent
models from each domain’s area [17].

Intrusion Detection: Intrusion detection now is getting the attention in the
ICS/SCADA. Zhu and Sastry [18] have given a very detailed outlook of intrusion
detection for ICS/SCADA. Recently Mantere et al. [19] have used self-organizing
maps to identify anomalies in the restricted IP network that exhibits a deter-
ministic behavior. The work of Krotofile and Kardenas [20] utilizes the theory
of the Best Choice problem to identify the best time to maximize the damage
caused by DoS attacks. Zhang et al. [21] have employed the support vector ma-
chine for attack classification at three layers: home, neighborhood, and wide area
networks in a smart grid.

3 PLCs and Time-Series Features

A Programmable Logic Controller (PLC) is a small unit controlling physical
processes that receives sensor data (e.g., temperature, pressure) and itself con-
trols physical operations (e.g., actuators, valves). PLCs, furthermore, provide
a networking channel to monitor/control the physical operations allowing ad-
ministrators to supervise the operational status by a human machine interface
(HMI). Since SCADA systems have mostly become larger and complex, PLC-
HMI communications (i.e., industrial protocols) are, in most, implemented onto
the TCP/IP stack on the IPv4 network.

It is usually restricted to directly access the PLCs and obtain the internal
information (i.e., PLC I/O) or events (at runtime) by the technical reasons or
facility policy. Otherwise, tracing data at the network level is far more stable
and makes a less cost. We believe, abnormal cases in operational level (e.g., an
accident) should affect the status in PLCs and their reporting messages.

The time series data that we are making an analysis on involve two as-
pects; time and content, therefore, crafted data may show shifted timestamp
(i.e., packet arrival time) or the altered content. In this point, we extract two
time-series features at the network level regarding packet arrival time and packet
length.

First, we capture the time interval (TI) from the packet trace. In unusual
cases, packets may arrive more rapid or sluggishly compared to the normal cases
and that will make altered the TI of packets. For the second, we capture the
packet length (PL). When operational error (or network intrusion) craft/drop
the few packets the sequence of PL will be also altered.

For the PLC p, we define TI and PL as,

TIp =< tp2 − tp1, t
p
3 − tp2, · · · , t

p
i − tpi−1, · · · >, PLp =< sp1, s

p
2, · · · , s

p
i , · · · >

where tpi is the time when i-th packet from p has been sent out, spi is its length.

2 C. Bae et al.

In this regard, to address those problems, we aim at achieving following
goals: (i) security analysis method with a PLC type-free feature, (ii) to detect
the complex and sophisticated PLCs attacks (e.g., PLC-blaster [1]).

To make our first goal, we try to leverage the manufacturer-free PLC features.
In this regard, we focus to observe the network traffic from the PLCs, specifically
a couple of the time-series data from network trace; time interval (TI) and packet
length (PL) by each PLC communication flow.

In order for the second goal, we try to fetch the regular patterns from TI
and PL for each PLC and exploit the neural networks for the high accuracy. We
claim that each PLC is repeating a similar work and shows its regular pattern.
In this regard, we use the recurrent neural networks (RNNs) upon TI and PL to
predict the upcoming time-series stream. Once the next time-series stream gets
predicted, we can compare those by the real time-series to detect anomalies when
they much differ. We evaluate, by this method, a tiny variant from signal could
be detected by the neural networks model.

In addition, to make a fully automated analysis, we leverage hyperparameter
optimization, with a Tree-structured Parzen Estimator (TPE) method [9] to
build parameters in neural model by each PLC.

In the evaluation, we use the real-world dataset collected from the operating
infrastructure in South Korea so that we can verify our method can work on the
real environment. In addition, we further simulate our method upon the PLC-
blaster [1] in the testbed (with four PLCs, one HMI, two step motors). The
evaluation results show that our method successfully detects the PLC-blaster as
well.

2 Related Work

Network Traffic Analysis on ICS/SCADA: We focus on the network traffic
from PLCs in ICS/SCADA systems. The PLCs’ traffic is generally regarded to
have the regular patterns since they are repeating the several predefined actions.
However, unlike this common knowledge, Barbosa et al. [10][11] have observed
that the SCADA traffic also has complex and arbitrary aspect comparing with
the SNMP traffic (which is generated by the machines, not human) of the Inter-
net. They have explained that the irregularity comes from the human interfer-
ence. Moreover, Kim et al. [12] have claimed that the problems (i.e., packet loss,
out-of-order, and retransmission) are able to make the network traffic from PLCs
more irregular in network monitoring step. For modeling the complex patterns
as well, we employ the recurrent neural networks where other classical methods
might fail as it is noted in several related work [13][14].
Recurrent Neural Network: To the best of our knowledge, our work is a novel
approach that implements RNN analysis methods into the ICS/SCADA systems,
still, there have been several studies that apply the RNN models onto time-
series data. Malhotra et al. [15] issue the feasibility for the one-sided learning
from the time-series data from the real-world datasets (ECG, space shuttle, etc).
Additionally, we may have the benefit from the work by bontemps et al. [16]
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which covers the time-series features on the network traffic using RNN models.
Several other works have been proposed a novel analysis method with recurrent
models from each domain’s area [17].

Intrusion Detection: Intrusion detection now is getting the attention in the
ICS/SCADA. Zhu and Sastry [18] have given a very detailed outlook of intrusion
detection for ICS/SCADA. Recently Mantere et al. [19] have used self-organizing
maps to identify anomalies in the restricted IP network that exhibits a deter-
ministic behavior. The work of Krotofile and Kardenas [20] utilizes the theory
of the Best Choice problem to identify the best time to maximize the damage
caused by DoS attacks. Zhang et al. [21] have employed the support vector ma-
chine for attack classification at three layers: home, neighborhood, and wide area
networks in a smart grid.

3 PLCs and Time-Series Features

A Programmable Logic Controller (PLC) is a small unit controlling physical
processes that receives sensor data (e.g., temperature, pressure) and itself con-
trols physical operations (e.g., actuators, valves). PLCs, furthermore, provide
a networking channel to monitor/control the physical operations allowing ad-
ministrators to supervise the operational status by a human machine interface
(HMI). Since SCADA systems have mostly become larger and complex, PLC-
HMI communications (i.e., industrial protocols) are, in most, implemented onto
the TCP/IP stack on the IPv4 network.

It is usually restricted to directly access the PLCs and obtain the internal
information (i.e., PLC I/O) or events (at runtime) by the technical reasons or
facility policy. Otherwise, tracing data at the network level is far more stable
and makes a less cost. We believe, abnormal cases in operational level (e.g., an
accident) should affect the status in PLCs and their reporting messages.

The time series data that we are making an analysis on involve two as-
pects; time and content, therefore, crafted data may show shifted timestamp
(i.e., packet arrival time) or the altered content. In this point, we extract two
time-series features at the network level regarding packet arrival time and packet
length.

First, we capture the time interval (TI) from the packet trace. In unusual
cases, packets may arrive more rapid or sluggishly compared to the normal cases
and that will make altered the TI of packets. For the second, we capture the
packet length (PL). When operational error (or network intrusion) craft/drop
the few packets the sequence of PL will be also altered.

For the PLC p, we define TI and PL as,

TIp =< tp2 − tp1, t
p
3 − tp2, · · · , t
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i − tpi−1, · · · >, PLp =< sp1, s
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where tpi is the time when i-th packet from p has been sent out, spi is its length.
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Fig. 1: An RNN model for predicting time series data

Predict and Detect Anomaly When unusual cases arise in the infrastructure
and affect in the time-series signal, an unexpected and altered signal will appear.
Therefore, it would make a difference against predicted values. Therefore, by
monitoring the gap, abnormality in operations will be detected.

Fig. 2: A Time-series data analysis upon an RNN model

Mean Squared Error (MSE) is a standard measure to refer a difference be-
tween a couple of time series signals (i.e., prediction and real value), defined
as;

4 C. Bae et al.

4 Recurrent Neural Network (RNN) based Anomaly
Detection

4.1 Neural Networks and Recurrent Networks

A neural network (or deep learning) is an emerging intelligent machine learning
approach that gives a human intuition or senses to machines. The legacy ma-
chine learning algorithms (e.g., SVM, Naive Bayes) are based on the probability
or statistics model, therefore, capable only if provided the selected numerical
indications by the data analyst. However, a neural network itself makes the
intuitive analysis from the dummy of raw data.

A Recurrent Neural Network (RNN) is a specific type of DNN models. Non-
recurrent models (e.g., convolution neural network) do not consider contextual
factor therefore could not handle previous events into the current reasoning. On
the other hand, RNNs involve a loop in the model that the output values from
the previous step is given to the next one.

A time-series data refer to sequential stream in which previous events or
incidents may affect following values. Therefore, when we build a model for the
time-series analysis, recurrent networks (i.e., a model with loop) should be in use
for a relational view over sequential flow. The signals from the control systems
are fairly regular and predictable due to their repeating operation. For these
reasons, we try to build an automated analysis by applying an RNN model and
its intuition.

4.2 A RNN model for the time-series data

Model Build We pose the one-sided learning, i.e., we train a model with only
normal cases and try to discover the abnormal cases. It is strongly restricted to
make an intentional accident (or cyber-invasion), therefore it, in most cases, is
tough to gain the proper labeled data (both malicious and benign) for the exper-
iment. Therefore, one-sided learning is in need to analysis the control systems.

We design an RNN model to predict the next stream given by the previous
stream. We design the RNN model that, given by current time-series data, it
gives the next anticipated stream (i.e., prediction). With the trained model m,

(X̂(i+n), X̂(i+n+1), ..., X̂(i+n+m−1)) = RNNm(Xi, X(i+1), ..., X(i+n−1))

where X̂i is the anticipated value of Xi. Figure 1 illustrates the entire process
of the RNN model.

In order to make the model predict the time-series data properly, we need
our model to be trained under the enough sample. Explicitly, the training phase
is to find the set of internal weight values, i.e., wi,k,j for the minimized error.

set wi,k,j for ∀i, k, j

to minimize
∣∣∣(X1, X2, ..., XN )− (X̂1, X̂2, ..., X̂N )

∣∣∣
where (X1, X2, ..., XN ) denote the entire training data. Finally, to solve the
optima problem, we use the ADAM optimization method [22].
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Fig. 1: An RNN model for predicting time series data

Predict and Detect Anomaly When unusual cases arise in the infrastructure
and affect in the time-series signal, an unexpected and altered signal will appear.
Therefore, it would make a difference against predicted values. Therefore, by
monitoring the gap, abnormality in operations will be detected.

Fig. 2: A Time-series data analysis upon an RNN model

Mean Squared Error (MSE) is a standard measure to refer a difference be-
tween a couple of time series signals (i.e., prediction and real value), defined
as;

The 19th World Conference on Information Security Applications

-83-



An Analysis on Time-Series Data from PLCs in ICS/SCADA systems 7

We found that the three PLCs are running on at the facility; (1) the PLC for
chemical process (PLC-C), (2) filter control (PLC-F) and (3) the master PLC in
charge of the other part of operations (PLC-M); aggregating, disinfecting, etc.

In the infrastructure, equipped PLCs, at runtime, generate the traffic upon
the TCP messages (with port 2004), and UDP packets (port 2006) for their the
control communications. Table 1 describes a captured amount of traffic for each
PLC (i.e., packet number, traffic size) during the capture time (140 minute).
We claim that UDP packets are only sent out in broadcast (the destination’s
IP address is masked by *.*.*.255), i.e., there is no distinct receiver, otherwise
TCP/IP communication is a type of peer to peer network. We note that TI from
PLC-M UDP trace shows the constant value so we omit from our evaluation.

For the cross validation, we slice the entire data (140 minute) into several
windows which contain 40 minute data per each (i.e., we give 10 minute delay
to every two adjacent windows, i.e., they have the 30 minute overlapped time
span). So we have W1= (0, 40) , W2= (10, 50) , ... , W11= (100, 140). We use
the first window to set the parameters, and the others for the 10-fold validation.
We also note that, in every set of window, we train the model with the first 30
minute signal, and measure the model accuracy with last of 10 minute data.

5.2 Hyperparameters Result by TPE method

For the model choice, LSTM models outperforms legacy RNNs, but except for
the only case of the time interval of PLC-C UDP. The sigmoid activator is most
proper for the time interval of PLC-M TCP and the packet length of PLC-
C TCP/UDP and PLC-M TCP and tangent hyperbola is picked for the other
cases (ReLU is not in use). Additionally, table 2 shows the result of numerical
optimized hyperparameters where we will use individually for the each model
footnote

data:time interval nodes (input/output) hidden iter. learning rate

PLC-C
TCP 117/97 4 1 0.1594
UDP 148/108 4 4 0.0030

PLC-F
TCP 201/175 5 2 0.0019
UDP 48/28 5 2 0.0671

PLC-M
TCP 145/99 2 4 0.0293
UDP 12/10 2 2 0.0022

(a) the parameter values for time interval

data:packet length nodes (input/output) hidden iter. learning rate

PLC-C
TCP 81/47 2 1 0.1269
UDP 144/136 5 3 0.1832

PLC-F
TCP 174/131 3 2 0.0195
UDP 90/70 3 3 0.1511

PLC-M TCP 79/61 3 4 0.0032

(b) the parameter values for message length
Table 2: The list of optimized parameters for the RNN models.
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MSE =
1

m

m∑
i=1

(X̂i −Xi)
2

We regard the MSE score between the predicted signal and real values as the
indication of abnormality. By setting a threshold value for alarming, we could
also make the detecting system. The more precisely an RNN model predicts the
stream, the more tightly we could set the alarm rate, therefore the detecting
mechanism will become more firm to catch every subtle change.

Hyperparamter Set Building the proper RNN models requires tuning model
parameters. The neural networks need several parameters to be set before in use
for the analysis.

At the first, we choose the size of input nodes and output nodes of the RNN
model. In addition, when we compose a model, the number of hidden layers is
a design choice. Additionally, we select the type of neural cell and its activation
function. The derived type of RNN, Long Short-Term Memory (LSTM) which
designed to supplement the RNN’s forgetting problem and enlarge the memory
power also should be in consideration [23]. For the last, when training the model,
the number of iteration count and learning rate also matter for its performance,
therefore we should select the proper number.

For the fully automated model building process, we adopt the Tree-structured
Parzen Estimator (TPE) method [24] to extract the appropriate combination of
parameters that the model predicts at the most accurate level (i.e., minimize
the MSE score).

5 Evaluation I: A Real World Infrastructure

5.1 Data Collection

For the evaluation, we have captured PLCs’ Ethernet traffic, while operating,
from the real world infrastructure, a water purifying plant in South Korea. Uti-
lizing the switch mirroring and the NTM machine (NTM-EX4-A). We have
collected the network traffic during 17:30∼19:50 (140 minute) at 21st, June,
2017.

Type Protocol Packets Size

PLC-C
TCP(2004) 924K 160MB
UDP(2006) 944K 72MB

PLC-F
TCP(2004) 967K 140MB
UDP(2006) 220K 14MB

PLC-M
TCP(2004) 946K 217MB
UDP(2006) 473K 28MB

Table 1: PLCs and collected traffic dataset in the facility
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We found that the three PLCs are running on at the facility; (1) the PLC for
chemical process (PLC-C), (2) filter control (PLC-F) and (3) the master PLC in
charge of the other part of operations (PLC-M); aggregating, disinfecting, etc.

In the infrastructure, equipped PLCs, at runtime, generate the traffic upon
the TCP messages (with port 2004), and UDP packets (port 2006) for their the
control communications. Table 1 describes a captured amount of traffic for each
PLC (i.e., packet number, traffic size) during the capture time (140 minute).
We claim that UDP packets are only sent out in broadcast (the destination’s
IP address is masked by *.*.*.255), i.e., there is no distinct receiver, otherwise
TCP/IP communication is a type of peer to peer network. We note that TI from
PLC-M UDP trace shows the constant value so we omit from our evaluation.

For the cross validation, we slice the entire data (140 minute) into several
windows which contain 40 minute data per each (i.e., we give 10 minute delay
to every two adjacent windows, i.e., they have the 30 minute overlapped time
span). So we have W1= (0, 40) , W2= (10, 50) , ... , W11= (100, 140). We use
the first window to set the parameters, and the others for the 10-fold validation.
We also note that, in every set of window, we train the model with the first 30
minute signal, and measure the model accuracy with last of 10 minute data.

5.2 Hyperparameters Result by TPE method

For the model choice, LSTM models outperforms legacy RNNs, but except for
the only case of the time interval of PLC-C UDP. The sigmoid activator is most
proper for the time interval of PLC-M TCP and the packet length of PLC-
C TCP/UDP and PLC-M TCP and tangent hyperbola is picked for the other
cases (ReLU is not in use). Additionally, table 2 shows the result of numerical
optimized hyperparameters where we will use individually for the each model
footnote

data:time interval nodes (input/output) hidden iter. learning rate

PLC-C
TCP 117/97 4 1 0.1594
UDP 148/108 4 4 0.0030

PLC-F
TCP 201/175 5 2 0.0019
UDP 48/28 5 2 0.0671

PLC-M
TCP 145/99 2 4 0.0293
UDP 12/10 2 2 0.0022

(a) the parameter values for time interval

data:packet length nodes (input/output) hidden iter. learning rate

PLC-C
TCP 81/47 2 1 0.1269
UDP 144/136 5 3 0.1832

PLC-F
TCP 174/131 3 2 0.0195
UDP 90/70 3 3 0.1511

PLC-M TCP 79/61 3 4 0.0032

(b) the parameter values for message length
Table 2: The list of optimized parameters for the RNN models.
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(a)-(c): The RoC Curves from Packet Time Interval Feature on TCP messages

(a) PLC-M (b) PLC-F (c) PLC-C

(d)-(f): The RoC Curves from Packet Length Feature on TCP messages

(d) PLC-M (e) PLC-F (f) PLC-C

(g)-(i): The RoC Curves from Packet Time Interval Feature on UDP messages

(g) PLC-M (h) PLC-F (i) PLC-C

(j)-(i): The RoC Curves from Packet Length Feature on UDP messages

(j) PLC-F (k) PLC-C

Fig. 3: The RoC Curves representing the detecting score by the network level
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5.3 Analysis Result

In this section, we present the precision rate by the receiver operating charac-
teristic (RoC) curves. First, we follow by,

– true positive rate (TPR) = (TP)/(TP+FN)
– false positive rate (FPR) = (FP)/(TN+FP).

where TP, FN, TN and FP denote the number of true positive, false negative,
true negative and false positive respectively.

Before we measure the rate score, we have sliced streams into every set of 100
packets, and extracted the MSE score for indicating its suspicious score. We have
repeated the same measure under injected noise (with level of 5%, 8%, 10%) to
evaluate how properly the MSE scores rise and make it possible to alarm under
abnormal environments (i.e., injected noise). We note that the noise is injected
to stream as,

Xnoise,i = (1 + rand× level)×Xi

where rand is a random number in (-1, 1) and level is the noise level in (0, 1),
(e. g., 5% is represented by 0.05). In every RoC result, we provide the average
accuracy rate under ten times of validations.

Finally, we plot the ROC curves from all types of features and PLCs (i.e.,
flows) in figure 3. Regarding to the sophisticated attacks (e.g., APT), we evaluate
under the low level of noise (5% to 10%) to simulate tiny symptoms of threats.

In suitable cases, with 8% of injected noise, the RNN model shows upto 90%
TPR (in the poor cases, 60-80%) when we could accept 20% of FNR. However,
if we allow the noise level only under the 5% (i.e., if aiming to detect very
small symptoms), the FPR rises to around 40% in most cases. The detection
performance with 5% of noise shows the best cases in TCP packets in PL of PLC-
F and UDP massages TI of PLC-C. However, other than the best cases, not a few
amount of FNR is expected to handle with the noise under 5%. Otherwise, the
detection rates over 8, 10% of noise show fair and acceptable score (around 20%).
The detailed detection performance in noise level 10% is denoted in table 3.

If our model is adopted in real SCADA system, we recommend to set thresh-
old value to cover 10% of noise (this is not small!), then the human operators
only have to filter out 20% of false cases among detection alarms.

TPR FNR *AUROC F-score
noise = 10% TI PL TI PL TI PL TI PL

PLC-M
TCP 99.84% 86.47% 90.91% 90.79% 0.92 0.96 0.95 0.89
UDP 86.62% - 73.23% - 0.88 - 0.80 -

PLC-F
TCP 94.95% 99.59% 72.96% 98.50% 0.88 0.99 0.84 0.99
UDP 100.00% 67.72% 100.00% 67.09% 1.00 0.78 1.00 0.67

PLC-C
TCP 95.04% 82.91% 81.11% 75.64% 0.94 0.85 0.88 0.79
UDP 94.93% 98.60% 93.62% 94.55% 0.98 0.99 0.94 0.97

Table 3: The overall detection ratio. *area under ROC
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(a)-(c): The RoC Curves from Packet Time Interval Feature on TCP messages

(a) PLC-M (b) PLC-F (c) PLC-C

(d)-(f): The RoC Curves from Packet Length Feature on TCP messages

(d) PLC-M (e) PLC-F (f) PLC-C

(g)-(i): The RoC Curves from Packet Time Interval Feature on UDP messages

(g) PLC-M (h) PLC-F (i) PLC-C

(j)-(i): The RoC Curves from Packet Length Feature on UDP messages

(j) PLC-F (k) PLC-C

Fig. 3: The RoC Curves representing the detecting score by the network level
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7 Conclusion

As ICS/SCADA systems becoming the targets for the cyber attacks, we propose
a method to detect invasions into an ICS network, mainly targeting a PLC,
i.e., the significant and critical unit in ICS systems. The proposed detection
methods are based on an RNN prediction, regarding a gap from the prediction
as the suspicious score. For the evaluation, we have traced the PLC generating
network traffic in the real world facility, an RNN model shows, on average, 80%
TP rate with less than 20% FP rate, under a little noise (5-10%). We have also
shown that such methods work against the targeting attacks (i.e., PLC-bluster)
by implementing a PLC testbed.

8 Supplementary Study: Analysis upon PLC Read Value

Regarding to the sophisticated violations (e.g., attacks with the knowledge of
PLC data propagation), we try to extract features at the control level. We claim
that most PLC vendors do not encrypt nor encode the communicating data,
and open protocol specification for a wide utilization. Regarding on this, we
further try to make similar experiments upon the posting value (i.e., read value)
on the control messages. However, due to the unnecessary data (e.g., garbage
values) traveling on the control messages and having no ground truth fact upon
mapping information from byte to holding semantics, it is far restricted to tell
the absolute level of accuracy on the read values. Alternately, we indirectly cover
the feasibility of an RNN-based anomaly detection upon read value by probing
the portion of the predictable streams.

8.1 Data Abstraction

Let memory area be the allocated memory space in a PLC given by starting
address and its length. The SCADA server in the infrastructure (i.e., HMI) is
reading 25 memory areas from PLC-C, 17 areas from PLC-F and 35 areas from
PLC-M (i.e., 77 areas in total). Again, if cumulating all areas, we confirm that
14,646 byte of reading values are transferred to the HMI at the single scan (4006
byte by PLC-C, 2130 byte by PLC-F and 8510 byte by PLC-M). We claim that,
however, most of bytes are fixed and show the constant value, removing them, we
have 615 streams to analyze (161 by PLC-C, 189 by PLC-F and 265 by PLC-M).

8.2 Analysis Result

Due to the large scale of control messages and having trouble to individually
set 615 types of optimized parameters, we set the common set of parameters for
whole streams (we also aim at the generality of the model). We have again used
the TPE method to minimize the sum of MSE scores from every stream (i.e.,
615 streams). As a result of the search, we have the LSTM model along with
sigmoid function as an activator and set the model to have 70 input nodes and
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6 Evaluation II: under the PLC-blaster

6.1 Testbed Operation

The PLCs’ testbed is composed of three PLCs with an HMI interface. The
testbed simulates a chlorination process (for the sterilization) where the system
controls the chlorinating process (by valve) and the temperature (by turbine). A
sensor, at all times, gets the temperature (PLC-S), and when the temperature
is low enough (we set 10 ◦C), the valve gets open, therefore the chlorine will be
put into the place, the chlorination work will begin (PLC-V). As it is getting
warmer (we set 20 ◦C), however, a chlorination process may get in danger, we
stop the chlorination process by closing the valve, and turn on the turbine for
cooling it down (PLC-T). When it becomes a low temperature enough (i.e., 10
◦C), the valve again gets open, the process repeats. Moreover, an HMI interface
shows each operation’s status (i.e., the temperature, and open/close status of
valve and turbine).

To simulate an operational abnormality in the testbed, we have remotely
altered the PLCs program logic by the program update function, and disabled
interaction between PLCs. As a result, the PLC-T and the PLC-V do not sense
the temperature so that the turbine may not be operating for cooling down or
the valve may open at the improper temperature.

6.2 Analysis Result

(a) PLC-T-MSE (b) PLC-V-MSE

Fig. 4: The MSE score during operation with the attack injection

At first, we have operated pure grant PLCs for 40 minutes to tune the pa-
rameters (similar to the previous evaluations) and another 30 minutes to train
the RNN models. Then, we have observed how the MSE score changes after
committing the sabotage (see figure 4).

We find that the sabotage attack in the case toward control network is ex-
posed by the packets’ interval time from TCP messages. Figure 4 depicts how
MSE scores vary upon the attack from the PLC-T and PLC-V. At the moment
when PLCs are manipulated, the MSE scores of interval time show the sudden
rise, the rapid alarm against the intrusion is in capable of.
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7 Conclusion

As ICS/SCADA systems becoming the targets for the cyber attacks, we propose
a method to detect invasions into an ICS network, mainly targeting a PLC,
i.e., the significant and critical unit in ICS systems. The proposed detection
methods are based on an RNN prediction, regarding a gap from the prediction
as the suspicious score. For the evaluation, we have traced the PLC generating
network traffic in the real world facility, an RNN model shows, on average, 80%
TP rate with less than 20% FP rate, under a little noise (5-10%). We have also
shown that such methods work against the targeting attacks (i.e., PLC-bluster)
by implementing a PLC testbed.

8 Supplementary Study: Analysis upon PLC Read Value

Regarding to the sophisticated violations (e.g., attacks with the knowledge of
PLC data propagation), we try to extract features at the control level. We claim
that most PLC vendors do not encrypt nor encode the communicating data,
and open protocol specification for a wide utilization. Regarding on this, we
further try to make similar experiments upon the posting value (i.e., read value)
on the control messages. However, due to the unnecessary data (e.g., garbage
values) traveling on the control messages and having no ground truth fact upon
mapping information from byte to holding semantics, it is far restricted to tell
the absolute level of accuracy on the read values. Alternately, we indirectly cover
the feasibility of an RNN-based anomaly detection upon read value by probing
the portion of the predictable streams.

8.1 Data Abstraction

Let memory area be the allocated memory space in a PLC given by starting
address and its length. The SCADA server in the infrastructure (i.e., HMI) is
reading 25 memory areas from PLC-C, 17 areas from PLC-F and 35 areas from
PLC-M (i.e., 77 areas in total). Again, if cumulating all areas, we confirm that
14,646 byte of reading values are transferred to the HMI at the single scan (4006
byte by PLC-C, 2130 byte by PLC-F and 8510 byte by PLC-M). We claim that,
however, most of bytes are fixed and show the constant value, removing them, we
have 615 streams to analyze (161 by PLC-C, 189 by PLC-F and 265 by PLC-M).

8.2 Analysis Result

Due to the large scale of control messages and having trouble to individually
set 615 types of optimized parameters, we set the common set of parameters for
whole streams (we also aim at the generality of the model). We have again used
the TPE method to minimize the sum of MSE scores from every stream (i.e.,
615 streams). As a result of the search, we have the LSTM model along with
sigmoid function as an activator and set the model to have 70 input nodes and
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(a) PLC-M (b) PLC-F (c) PLC-C

Fig. 5: The CDFs upon TP rate from the read value (no FP allowed)

47 output nodes with 7 hidden layers. Finally, we are training the model by the
rate of 0.3875 without an iteration.

Figure 5 presents the CDFs upon the true positive rates. In the CDFs (a)-(c),
we have not allowed to have any false positive (i.e., by controlling a threshold).
Similar to the Evaluation I, we inject the noise by 5%, 8% and 10%.

In the average level from three PLCs, around 30% of streams are detectable
by over than 80% positive rate, while other 10% of streams show over than 60%
positive rate. We may have a benefit by RNN models that give a chance to detect
anomaly without a false alarm.

8.3 PLC Testbed

Along with the previous evaluation, the injected attack on the PLC testbed (in
Evaluation II) also show the MSE variances in the read value. After being crafted
by intrusion, the MSE scores from read value by control messages rise in PLC-T,
PLC-V (see figure 6).

Fig. 6: A Testbed kit for the water treatment (3 PLCs with an HMI display)
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Abstract. In this paper, we presented novel parallel implementations of
CHAM-64/128 block cipher on modern ARM-NEON processors. In order
to accelerate the performance of the implementation of CHAM-64/128
block cipher, the full specifications of ARM-NEON processors are utilized
in terms of instruction set and multiple cores. First, the SIMD feature
of ARM processor is fully utilized. The modern ARM processor provides
2 × 16-bit vectorized instruction. By using the instruction sets and full
register files, total 4 CHAM-64/128 encryptions are performed at once in
data parallel way. Second, the dedicated SIMD instruction sets, namely
NEON engine, is fully exploited. The NEON engine supports 8× 16-bit
vectorized instruction over 128-bit Q registers. The 24 CHAM-64/128 en-
cryptions are performed at once in data parallel way. Third, both ARM
and NEON instruction sets are well re-ordered in interleaved way. This
mixed approach hides the pipeline stalls between each instruction set.
Fourth, the multiple cores are exploited to maximize the performance in
thread level. Finally, we achieved the 0.42 cycles/byte for implementa-
tion of CHAM-64/128 on ARM-NEON processors. This result is faster
than the parallel implementation of LEA-128/128 and HIGHT-64/128
on same processor by about 4.04x and 9.92x , respectively.
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tion sets, including SSE/AVX for INTEL and NEON for ARM, respectively.
Since the SIMD instruction sets can issue multiple tasks in single instruction,
traditional Single Instruction Single Data (SISD) based implementations can be
accelerated by using SIMD instruction sets. Recently, many block cipher imple-
mentations, including LEA, HIGHT, SIMON, and SPECK, were re-programmed
in SIMD instruction sets and achieved much higher performance than previous
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Table 1. Instruction set summary for ARM

Mnemonics Operands Description Cycles

ADD Rd, Rr Add without Carry 1

EOR Rd, Rr Exclusive OR 1

ROL Rd, Rr,#imm Rotate Left Through Carry 1

ROR Rd, Rr,#imm Rotate Right Through Carry 1

Table 2. Instruction set summary for NEON

Mnemonics Operands Description Cycles

VADD Qd,Qn,Qm Vector Addition 1

VEOR Qd,Qn,Qm Vector Exclusive-or 1

VSHL Qd,Qm,#imm Vector Left Shift 1

VSRI Qd,Qm,#imm Vector Right Shift with Insert 2

the most lightweight variant of CHAM, namely CHAM-64/128, for lightweight
implementations. However, this work is not limited to only CHAM-64/128, but
the technique is also easily applied to other variants such as CHAM-128/128 and
CHAM-128/256.

2.2 ARM-NEON Processor

Advanced RISC Machine (ARM) is an instruction set architecture (ISA) design
by ARM for high-performance 32-bit embedded applications. Although ARM
cores are usually larger and more complex than 8-bit AVR and 16-bit MSP
processors, most ARM designs also have competitive features, in terms of low
power consumptions, high-speed computations, and high code density. The ARM
family has developed from the traditional ARM1 to advanced Cortex architec-
tures in these days. They provide large number of pipeline stages and various
caches, SIMD extensions and simple load/store architecture. Most instructions
of the ARM are computed in a single cycle except memory access and some
arithmetic instructions. In particular, the inline-barrel shifter instruction allows
the shifted/rotated second operand without loss of clock cycles before the main
operations. The load and store operations are performed in multiple data. Their
32-bit wise instructions mainly used for ARX architectures are described in Table
1.

NEON is a 128-bit SIMD architecture from the modern ARM Cortex-A se-
ries. One of the biggest difference between traditional ARM processors and new
ARM-NEON processors is SIMD features. The NEON engine offers 128-bit wise
registers and instructions. Each register is considered as a vector of elements
of the same data type and this data type can be signed/unsigned 8-bit, 16-bit,
32-bit, or 64-bit. The detailed instructions for ARX operations are described in
Table 2. This feature provides a more precise operation in various word sizes,
which allows us to perform multiple data in single instruction, and the NEON

2 Authors Suppressed Due to Excessive Length

classical works [16, 14, 13]. Furthermore, the modern processors support multiple
cores/threads and each core/thread performs the task in parallel way. The most
well-known multiple core framework is OpenMP and many works also evaluated
the maximum performance of block cipher implementations by using OpenMP
library, including LEA and HIGHT [21, 15]. In this paper, we exploit a paral-
lel computing power into the novel lightweight block cipher, CHAM, which was
released at ICISC’17 by NSR [10]. The CHAM block cipher can be efficiently
implemented in both platforms ranging from low-end embedded microproces-
sors to high-end personal computers. Contrary to previous implementations of
CHAM block cipher, which mainly focused on serial computations on embed-
ded processors, this paper introduces the feasibility of parallel implementation
of CHAM on modern ARM-NEON processors. To improve the performance, we
fully exploit the SIMD architectures with novel techniques. It is also worth to
note that all the proposed methods are not limited to CHAM implementation
but this can be applied to the other cryptography implementations with simple
modifications

The remainder of this paper is organized as follows. In Section 2, the ba-
sic specifications of CHAM block cipher and target ARM-NEON platform are
described. In Section 3, the compact parallel implementations of CHAM block
cipher on ARM-NEON platform are described. In Section 4, the performance of
proposed methods in terms of execution timing is evaluated. Finally, Section 5
concludes the paper.

2 Related Works

2.1 CHAM Block Cipher

Lightweight cryptography is a fundamental technology to reduce the hardware
chip size and accelerate the execution time for the Internet of Things (IoT) de-
vices. Recently, a number of block ciphers have been designed for being lightweight
features. The approaches are largely divided into two approaches, including Sub-
stitute Permutation Network (SPN) and Addition-Rotation-XOR (ARX). For
the SPN architecture, PRESENT and GIFT block ciphers received the atten-
tion. The SPN block ciphers utilize the simple 4-bit S-BOX and permutation to
achieve the high security as well [1, 5]. For the ARX architecture, HIGHT, LEA,
SPECK, SIMON, and CHAM block ciphers have been proposed. The ARX block
cipher exploit the simple ARX operations [9, 2, 8, 10].

In ICISC 2017, a family of lightweight block ciphers CHAM was announced
by the Attached Institute of ETRI [10]. The family consists of three ciphers,
including CHAM-64/128, CHAM-128/128, and CHAM-128/256. The CHAM
block ciphers are of the generalized 4-branch Feistel structure based on ARX
operations. The ARX operations ensure high performance on both software and
hardware platforms and security against the timing attack. Particularly, the
CHAM block cipher does not require updating a key state by using of stateless−
on − the − fly key schedule. With above nice features, the implementation of
CHAM block ciphers achieved outstanding figures. In this paper, we targeted
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Table 1. Instruction set summary for ARM

Mnemonics Operands Description Cycles

ADD Rd, Rr Add without Carry 1

EOR Rd, Rr Exclusive OR 1

ROL Rd, Rr,#imm Rotate Left Through Carry 1

ROR Rd, Rr,#imm Rotate Right Through Carry 1

Table 2. Instruction set summary for NEON

Mnemonics Operands Description Cycles

VADD Qd,Qn,Qm Vector Addition 1

VEOR Qd,Qn,Qm Vector Exclusive-or 1

VSHL Qd,Qm,#imm Vector Left Shift 1

VSRI Qd,Qm,#imm Vector Right Shift with Insert 2

the most lightweight variant of CHAM, namely CHAM-64/128, for lightweight
implementations. However, this work is not limited to only CHAM-64/128, but
the technique is also easily applied to other variants such as CHAM-128/128 and
CHAM-128/256.

2.2 ARM-NEON Processor

Advanced RISC Machine (ARM) is an instruction set architecture (ISA) design
by ARM for high-performance 32-bit embedded applications. Although ARM
cores are usually larger and more complex than 8-bit AVR and 16-bit MSP
processors, most ARM designs also have competitive features, in terms of low
power consumptions, high-speed computations, and high code density. The ARM
family has developed from the traditional ARM1 to advanced Cortex architec-
tures in these days. They provide large number of pipeline stages and various
caches, SIMD extensions and simple load/store architecture. Most instructions
of the ARM are computed in a single cycle except memory access and some
arithmetic instructions. In particular, the inline-barrel shifter instruction allows
the shifted/rotated second operand without loss of clock cycles before the main
operations. The load and store operations are performed in multiple data. Their
32-bit wise instructions mainly used for ARX architectures are described in Table
1.

NEON is a 128-bit SIMD architecture from the modern ARM Cortex-A se-
ries. One of the biggest difference between traditional ARM processors and new
ARM-NEON processors is SIMD features. The NEON engine offers 128-bit wise
registers and instructions. Each register is considered as a vector of elements
of the same data type and this data type can be signed/unsigned 8-bit, 16-bit,
32-bit, or 64-bit. The detailed instructions for ARX operations are described in
Table 2. This feature provides a more precise operation in various word sizes,
which allows us to perform multiple data in single instruction, and the NEON
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Table 3. 32-bit instructions over 32-bit ARM, where R1 and R0 represent destination
and source registers

Addition Exclusive-or Right Rotation by 31

ADD R1, R1, R0 EOR R1, R1, R0 ROR R1, #31

3.1 Parallel Implementation in ARM

CHAM-64/128 block cipher can be efficiently implemented on the 16-bit proces-
sor, because the platform provides 16-bit wise addition, bit-wise exclusive-or, and
rotation operations, which are main 16-bit ARX operations for CHAM-64/128
block cipher. However, our target processor is 32-bit ARM processor and it is
inefficient to implement the 16-bit wise operations in 32-bit ARM instructions
described in Table 3, since the half of word is not utilized.

In order to optimize the 16-bit operations in 32-bit instruction sets, legacy
ARM SIMD instruction set (UADD16 R1, R1, R0) is utilized. The instruction
set divides the 32-bit registers into lower 16-bit and higher 16-bit and performs
2 16-bit addition in parallel way (like 2-way SIMD). Since the bit-wise exclusive-
or does not generate the carry bits, the ARM instruction set is directly used
without modification. The CHAM-64/128 block cipher requires 16-bit wise left
rotation by 1-bit and 8-bit offsets. In order to establish the 2-way 16-bit wise
rotation, the new rotation techniques are exploited. In Algorithm 1, the descrip-
tions of left rotation by 1-bit for 2 16-bit variables are given. Unlike 32-bit wise
rotation, ARM processor does not support 16-bit wise computations. For this
reason, two mask variables (0x0101 and 0xFEFE) are set. Both mask variables
are used to separate the 32-bit rotated input data into overflow bits and original
bits. Afterward, both bits are integrated into one, which generates the rotated
outputs. In Algorithm 2, the descriptions of left rotation by 8-bit for 2 16-bit
variables are given. Similarly, one mask variable (0x0F0F) is used to handle the
bits.

Algorithm 1: Left rotation by 1-bit for 2 16-bit variables

Input: input data (R1), mask values (0x0101: R2, 0xFEFE: R3), temporal
variable (R4)

Output: output data (R0)
1: ROR R0, R1, #31

2: AND R4, R0, R2

3: AND R0, R0, R3

4: ADD R0, R0, R4, ROR#16

For the data load, only 32-bit wise access is available in 32-bit ARM pro-
cessor. However, the word size of CHAM-64/128 is 16-bit and SIMD instruction
requires 16-bit wise alignments. For this reason, all input data should be finely

4 Authors Suppressed Due to Excessive Length

engine can accelerate data processing by at least 3X that provided by ARMv5
and at least 2X that provided by ARMv6 SIMD instructions. This nice structure
have accelerated the implementations by converting single instruction single data
model to SIMD in previous works. In CHES 2012, NEON-based cryptography
implementations including Salsa20, Poly1305, Curve25519, and Ed25519 were
presented [4]. In order to enhance the performance, the authors provided novel
bit-rotation, integration of multiplication, and reduction operations exploiting
NEON instructions. In CT–RSA’13, ARM–NEON implementation of Grøstl

shows that 40 % performance enhancements than the previous fastest ARM
implementation [7]. In HPEC 2013, a multiplicand reduction method for ARM-
NEON was introduced for the NIST curves [6]. In CHES 2014, the Curve41417
implementation adopts 2-level Karatsuba multiplication in the redundant rep-
resentation [3]. In ICISC 2014, Seo et al. introduced a novel 2-way Cascade
Operand Scanning (COS) multiplication for RSA implementation [17, 18]. In
ICISC 2015, Seo et al. introduced a efficient modular multiplication and squar-
ing operations for NIST P-521 curve [19]. Recently, Ring-LWE implementation
is also accelerated by taking advantages of NEON instructions [11].

For the case of ARM implementations for ARX block ciphers, LEA block
cipher implementations have been actively studied. First LEA implementation
utilized the basic 32-bit ARM instruction set for high performance [8]. In [20],
the parallel implementation of LEA was suggested, which utilized the SIMD in-
struction sets for high performance. In particular, the interdependency between
each instruction set is optimized and multiple plaintexts and round keys are used
in parallel way. In [21, 15], the LEA block cipher is efficiently implemented in
ARM and NEON instruction sets. Afterward, the compact ARM and NEON im-
plementations are performed in interleaved way. This approach hides the latency
of ARM computations into NEON computations and enhances the performance
significantly. In [15], the auxiliary function is implemented with 4-bit wise LUT
operation supported in NEON architecture (vtbl), which translates the auxil-
iary function into two 4-bit wise LUT operations. In [14, 13], lightweight block
ciphers, including SIMON and SPECK, are efficiently implemented over ARM-
NEON processor. For the case of new lightweight CHAM block cipher, there are
no ARM–NEON implementations. In this paper, we introduce a new implemen-
tation technique and new ARM–NEON results for CHAM block cipher.

3 Proposed Parallel Implementations of CHAM-64/128

In this section, we investigate the compact implementations of CHAM-64/128 on
ARM–NEON processors. Particularly, we targeted the most lightweight variant
of CHAM (i.e. CHAM-64/128) for lightweight implementations. However, this
work is not limited to only CHAM-64/128, but the technique is also easily applied
to other variants such as CHAM-128/128 and CHAM-128/256.
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Table 3. 32-bit instructions over 32-bit ARM, where R1 and R0 represent destination
and source registers

Addition Exclusive-or Right Rotation by 31

ADD R1, R1, R0 EOR R1, R1, R0 ROR R1, #31

3.1 Parallel Implementation in ARM

CHAM-64/128 block cipher can be efficiently implemented on the 16-bit proces-
sor, because the platform provides 16-bit wise addition, bit-wise exclusive-or, and
rotation operations, which are main 16-bit ARX operations for CHAM-64/128
block cipher. However, our target processor is 32-bit ARM processor and it is
inefficient to implement the 16-bit wise operations in 32-bit ARM instructions
described in Table 3, since the half of word is not utilized.

In order to optimize the 16-bit operations in 32-bit instruction sets, legacy
ARM SIMD instruction set (UADD16 R1, R1, R0) is utilized. The instruction
set divides the 32-bit registers into lower 16-bit and higher 16-bit and performs
2 16-bit addition in parallel way (like 2-way SIMD). Since the bit-wise exclusive-
or does not generate the carry bits, the ARM instruction set is directly used
without modification. The CHAM-64/128 block cipher requires 16-bit wise left
rotation by 1-bit and 8-bit offsets. In order to establish the 2-way 16-bit wise
rotation, the new rotation techniques are exploited. In Algorithm 1, the descrip-
tions of left rotation by 1-bit for 2 16-bit variables are given. Unlike 32-bit wise
rotation, ARM processor does not support 16-bit wise computations. For this
reason, two mask variables (0x0101 and 0xFEFE) are set. Both mask variables
are used to separate the 32-bit rotated input data into overflow bits and original
bits. Afterward, both bits are integrated into one, which generates the rotated
outputs. In Algorithm 2, the descriptions of left rotation by 8-bit for 2 16-bit
variables are given. Similarly, one mask variable (0x0F0F) is used to handle the
bits.

Algorithm 1: Left rotation by 1-bit for 2 16-bit variables

Input: input data (R1), mask values (0x0101: R2, 0xFEFE: R3), temporal
variable (R4)

Output: output data (R0)
1: ROR R0, R1, #31

2: AND R4, R0, R2

3: AND R0, R0, R3

4: ADD R0, R0, R4, ROR#16

For the data load, only 32-bit wise access is available in 32-bit ARM pro-
cessor. However, the word size of CHAM-64/128 is 16-bit and SIMD instruction
requires 16-bit wise alignments. For this reason, all input data should be finely
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Algorithm 3: Transpose operation for 4 plaintext in parallel way

Input: input data (R5--R12)
Output: output data (R2--R9)
1: UXTH R2, R5

2: ADD R2, R2, R7, LSL#16

3: UXTH R3, R9

4: ADD R3, R3, R11, LSL#16

5: LSR R4, R5, #16

6: ROR R7, R7, #16

7: ADD R4, R4, R7, LSL#16

8: LSR R5, R9, #16

9: ROR R11, R11, #16

10: ADD R5, R5, R11, LSL#16

11: UXTH R7, R6

12: LSR R9, R6, #16

13: ADD R6, R7, R8, LSL#16

14: UXTH R7, R10

15: LSR R11, R10, #16

16: ADD R7, R7, R12, LSL#16

17: ROR R8, R8, #16

18: ADD R8, R9, R8, LSL#16

19: ROR R12, R12, #16

20: ADD R9, R11, R12, LSL#16

Table 4. 16-bit instructions over 128-bit ARM-NEON, where Q1 and Q0 represent
destination and source registers

Addition Exclusive-or Right Rotation by 9

VADD.I16 Q1, Q1, Q0 VEOR Q1, Q1, Q0 VSHL.I16 Q1, Q0, #9

VSRI.16 Q1, Q0, #7

6 Authors Suppressed Due to Excessive Length

Algorithm 2: Left rotation by 8-bit for 2 16-bit variables

Input: input data (R1), mask values (0x0F0F: R2), temporal variable (R3)
Output: output data (R0)
1: AND R3, R1, R2

2: ROR R1, R1, #8

3: AND R1, R1, R2

4: ADD R1, R1, R3, ROR#24

aligned before performing the parallel computations. The detailed descriptions
are given in Algorithm 3. In Algorithm 3, 4 plaintexts are transposed in parallel
way. In Step 1 and 3, lower 16-bit plaintexts are extracted4. In Step 2 and 4,
the lower 16-bit part of other plaintexts are added to the extracted plaintext.
In Step 5–10, the higher 16-bit plaintexts are extracted and combined. Similarly
in Step 11–20, the remaining plaintexts are transposed. After the encryption,
transposed data sets are re-ordered to the original format.

For the register level optimization, we assigned 8 registers for plaintext, 3
registers for mask variables, 2 register for temporal storage, and 1 register for
memory pointer in encryption. The round keys are stored in the stack and the
variables are directly accessed through the stack pointer. This is available since
the round key size is very short for CHAM block ciphers.

3.2 Parallel Implementation in NEON

The basic 16-bit wise ARX operations of CHAM-64/128 block cipher are estab-
lished with NEON instructions (See Table 4) and 24 encryptions are performed
at once. This implementation assumes that all encryption shares same round key
pair. For this reason, only one round key is loaded and duplicated from ARM
register to the NEON registers, which reduces the number of memory access to
load the round key pairs. Similar to the ARM SIMD approach, input data should
be re-ordered to meet the SIMD friendly data format. The transpose operation is
performed with 12 NEON transpose instruction sets. The detailed descriptions
are given in Algorithm 4. In each 128-bit Q register, 2 64-bit plaintexts are stored.
In order to align the data into 16-bit wise, two different transpose operations
are required. First the operands are transposed by 16-bit wise. Afterward, the
data is transposed again by 32-bit wise and this outputs the finely 16-bit aligned
results. For the register level optimization, we assigned 12 registers for plaintext
and 4 registers for temporal storage. This ensures 24 CHAM-64/128 encryptions
at once.

3.3 Interleaved Implementation

ARM processor and NEON engine are independent processing units, which
means that they can issue the computations independently. This parallel fea-

4 UXTH instruction only extracts lower 16-bit from 32-bit register
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Algorithm 3: Transpose operation for 4 plaintext in parallel way

Input: input data (R5--R12)
Output: output data (R2--R9)
1: UXTH R2, R5

2: ADD R2, R2, R7, LSL#16

3: UXTH R3, R9

4: ADD R3, R3, R11, LSL#16

5: LSR R4, R5, #16

6: ROR R7, R7, #16

7: ADD R4, R4, R7, LSL#16

8: LSR R5, R9, #16

9: ROR R11, R11, #16

10: ADD R5, R5, R11, LSL#16

11: UXTH R7, R6

12: LSR R9, R6, #16

13: ADD R6, R7, R8, LSL#16

14: UXTH R7, R10

15: LSR R11, R10, #16

16: ADD R7, R7, R12, LSL#16

17: ROR R8, R8, #16

18: ADD R8, R9, R8, LSL#16

19: ROR R12, R12, #16

20: ADD R9, R11, R12, LSL#16

Table 4. 16-bit instructions over 128-bit ARM-NEON, where Q1 and Q0 represent
destination and source registers

Addition Exclusive-or Right Rotation by 9

VADD.I16 Q1, Q1, Q0 VEOR Q1, Q1, Q0 VSHL.I16 Q1, Q0, #9

VSRI.16 Q1, Q0, #7
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Fig. 1. Detailed architectures of parallel CHAM-64/128 encryptions in multiple cores

Table 5. Parallel Implementation of CHAM-64/128 in OpenMP

#pragma omp parallel private(id) shared(PLAINTEXT)

#pragma omp for

for(id=0;id<TOTAL;id++)

CHAM-64/128 Encryption(ROUNDKEY,PLAINTEXT[id]);

assigned each encryption operation into single thread, the four different CHAM-
64/128 encryption routines are performed in four different cores. As we can see
in Figure 1, 4 encryption (ARM) and 24 encryptions (NEON) in each core are
performed, simultaneously. Total 112 (28×4) parallel encryptions are performed
at once in 4 different cores.

4 Evaluation

To evaluate the performance of the CHAM-64/128 block cipher on the ARM–
NEON processor, we used a Raspberry Pi 3 Model B (Cortex–A53 quad-core
processor). For the ARM-NEON processor, we measured the execution time in
both single-core and multiple-core cases. The performance is measured in system
time function.

The comparison results are drawn in Table 6. The previous CHAM-64/128
implementation on ARM instruction sets achieved the 134 cycle/byte [10]. Since
the work does not utilize the NEON instruction set and target processor is the
low-end processor, the low performance is achieved. Unlike previous works, we
utilized the ARM SIMD instruction sets and tested over high-end processors.
The ARM SIMD based implementation utilizes four CHAM-64/128 encryptions
at once and it enhances the performance by 99% for ARM platform. To the
best of my knowledge, this is the first parallel implementation of CHAM-64/128
block cipher. For this reason, we only report our results in Table 6. The NEON
requires 1.4 clock cycles per byte for CHAM-64/128 implementations. This is

8 Authors Suppressed Due to Excessive Length

Algorithm 4: Transpose operation for 24 plaintext in parallel way

Input: input data (Q0--Q11)
Output: output data (Q0--Q11)
1: VTRN.16 Q0, Q1

2: VTRN.16 Q2, Q3

3: VTRN.16 Q4, Q5

4: VTRN.16 Q6, Q7

5: VTRN.16 Q8, Q9

6: VTRN.16 Q10, Q11

7: VTRN.32 Q0, Q2

8: VTRN.32 Q1, Q3

9: VTRN.32 Q4, Q6

10: VTRN.32 Q5, Q7

11: VTRN.32 Q8, Q10

12: VTRN.32 Q9, Q11

ture can be utilized to improve the performance by hiding the latency of ARM
operations into that of NEON [15]. In sequential order, the processing time is
exactly the sum of ARM and NEON execution timing while parallel order hides
the ARM timing into NEON timing. The interleaved CHAM-64/128 encryption
is performed as follows.

Load → Transpose → Encryption → Transpose → Store

Throughout the execution, Transpose and Encryption routines are per-
formed in interleaved way. Only, LOAD and STORE routines are sequentially per-
formed since it has inter-dependency between ARM and NEON instruction sets.
In the interleaved CHAM implementation, 24 CHAM encryptions in NEON en-
gine and 4 CHAM encryption are performed within optimized execution timing.
This approach significantly reduces the computation timing for ARM processor
and enhances the performance.

3.4 Multiple Thread Utilization

Recent ARM-NEON processors have multiple cores and each core can perform
independent work loads in parallel way. In order to exploit the full specifica-
tions of multiple processing, SIMT programming library, namely OpenMP, is
a good candidate. The target device has four physical cores, which can lead
to theoretically 4 times of performance improvements. The basic implementa-
tions are parallelized using OpenMP library. The detailed program codes are
described in Table 5. The id variables are critical data and defined as private.
The PLAINTEXT is defined as shared variables. The PLAINTEXT is indexed by id

variables, which ensures that each thread accesses to different data. Since we
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Fig. 1. Detailed architectures of parallel CHAM-64/128 encryptions in multiple cores

Table 5. Parallel Implementation of CHAM-64/128 in OpenMP

#pragma omp parallel private(id) shared(PLAINTEXT)

#pragma omp for

for(id=0;id<TOTAL;id++)

CHAM-64/128 Encryption(ROUNDKEY,PLAINTEXT[id]);

assigned each encryption operation into single thread, the four different CHAM-
64/128 encryption routines are performed in four different cores. As we can see
in Figure 1, 4 encryption (ARM) and 24 encryptions (NEON) in each core are
performed, simultaneously. Total 112 (28×4) parallel encryptions are performed
at once in 4 different cores.

4 Evaluation

To evaluate the performance of the CHAM-64/128 block cipher on the ARM–
NEON processor, we used a Raspberry Pi 3 Model B (Cortex–A53 quad-core
processor). For the ARM-NEON processor, we measured the execution time in
both single-core and multiple-core cases. The performance is measured in system
time function.

The comparison results are drawn in Table 6. The previous CHAM-64/128
implementation on ARM instruction sets achieved the 134 cycle/byte [10]. Since
the work does not utilize the NEON instruction set and target processor is the
low-end processor, the low performance is achieved. Unlike previous works, we
utilized the ARM SIMD instruction sets and tested over high-end processors.
The ARM SIMD based implementation utilizes four CHAM-64/128 encryptions
at once and it enhances the performance by 99% for ARM platform. To the
best of my knowledge, this is the first parallel implementation of CHAM-64/128
block cipher. For this reason, we only report our results in Table 6. The NEON
requires 1.4 clock cycles per byte for CHAM-64/128 implementations. This is
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SSE. Since the SIMD instructions are very similar to NEON instructions, this
can be directly applied to the other SIMD instruction sets. Furthermore, these
platforms support multiple cores and multiple threads. We can further explore
the strong features of OpenMP on these platforms.
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Method Speed(c/b) Instruction
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Proposed Method ver 3 1.3 ARM–NEON

The performance is accelerated again by exploiting the full multiple cores in
the platforms. Since the target platform is quad-core architecture, it improves
the performance by increasing the number of threads. Interestingly, the per-
formance decreases when the number of threads is larger than the number of
cores, because many number of threads requires a number of context-switching
procedures and this causes performance bottleneck (See Figure 2). Finally, fully
parallelized CHAM-64/128 implementations achieved the 0.42 cycle/byte with 4
threads. This is not exactly four times faster than single core but this is the high-
est CHAM-64/128 performance reported ever. Compared with other lightweight
block ciphers such as LEA-128/128 and HIGHT-64/128, the proposed CHAM-
64/128 implementations are faster by 4.04x and 9.92x, respectively.

5 Conclusion

In this paper, we presented new parallel implementation methods for CHAM-
64/128 block cipher on representative SIMD platforms, namely ARM-NEON.
We firstly optimized the both ARM and NEON implementations after then
both methods are performed in interleaved way. The implementation results are
further accelerated by taking advantages of multiple cores. Finally, we achieved
performance enhancement up-to 1.34 cycle/byte with single core implementa-
tion, which is 99% faster than previous implementations on ARM processors.
By enabling the features of multiple cores, we achieved 0.56 cycle/byte which
improved again the our single core results by 58.2%.

The proposed methods improved the CHAM-64/128 block cipher on ARM-
NEON platforms. For this reason, there are many future works remained. First,
we can directly improve the similar ARX block ciphers such as SPECK and
SIMON. Recent works by [14, 13] do not consider any techniques covered in this
paper. For this reason, we expect high performance enhancements by using the
proposed methods. Second, we only explore the ARM-NEON platform. However,
INTEL and AMD processors also provide SIMD instructions such as AVX and

WISA 2018

-114-



Parallel Implementations of CHAM 11

1 2 3 4 5 6 7 8

0

5

10

15

6.71

3.37
2.22 1.7

2.72 2.29 1.99 1.76

16.64

8.35

5.5
4.17

6.66
5.56

4.77 4.22

1.34 0.8 0.56 0.42 0.66 0.83 0.72 0.63

number of threads

cy
cl
es

p
er

b
y
te

LEA-128/128 [21, 15] HIGHT-64/128 [15] CHAM-64/128

Fig. 2. Comparison of LEA-128/128, HIGHT-64/128, and CHAM-64/128 block ciphers
results on ARM-NEON processors (Raspberry Pi 3) in terms of execution time (cycles
per byte) depending on the number of threads

SSE. Since the SIMD instructions are very similar to NEON instructions, this
can be directly applied to the other SIMD instruction sets. Furthermore, these
platforms support multiple cores and multiple threads. We can further explore
the strong features of OpenMP on these platforms.

6 Acknowledgement

This work was partly supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2017R1C1B5075742)
and the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information
Technology Research Center) support program(2014-1-00743) supervised by the
IITP(Institute for Information & communications Technology Promotion). Zhi
Hu was partially supported by the Natural Science Foundation of China (Grant
No. 61602526).

References

1. S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo. GIFT:
a small PRESENT. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 321–345. Springer, 2017.

2. R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers. The
SIMON and SPECK lightweight block ciphers. In Design Automation Conference
(DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2015.

The 19th World Conference on Information Security Applications

-115-



Parallel Implementations of CHAM 13

20. H. Seo, Z. Liu, T. Park, H. Kim, Y. Lee, J. Choi, and H. Kim. Parallel imple-
mentations of LEA. In Information Security and Cryptology–ICISC 2013, pages
256–274. Springer, 2013.

21. H. Seo, T. Park, S. Heo, G. Seo, B. Bae, Z. Hu, L. Zhou, Y. Nogami, Y. Zhu, and
H. Kim. Parallel implementations of LEA, revisited. In International Workshop
on Information Security Applications, pages 318–330. Springer, 2016.

12 Authors Suppressed Due to Excessive Length

3. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. Kummer strikes
back: new DH speed records. In Advances in Cryptology–ASIACRYPT 2014, pages
317–337. Springer, 2014.

4. D. J. Bernstein and P. Schwabe. NEON crypto. In Cryptographic Hardware and
Embedded Systems–CHES 2012, pages 320–339. Springer, 2012.

5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages
450–466. Springer, 2007.

6. A. Faz-Hernández, P. Longa, and A. H. Sánchez. Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV–GLS curves.
In Topics in Cryptology–CT-RSA 2014, pages 1–27. Springer, 2014.

7. S. Holzer-Graf, T. Krinninger, M. Pernull, M. Schläffer, P. Schwabe, D. Seywald,
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Abstract. Privacy-preserving big data analysis on cloud systems is be-
coming increasingly indispensable as the amount of information of the
individuals is accumulated on our database system. As a way of main-
taining security on cloud system, Homomorphic Encryption(HE) is con-
sidered to be theoretically eminent protecting against privacy leakage.
However, insufficient number of operations on HE are developed, hinder-
ing many research developers to apply their knowledgeable techniques
on this field. Therefore, we propose a novel approach in constructing
logarithm function based on mathematical theorem of Taylor expansion
with fundamental arithmetic operations and basic gate operations in us-
age. Moreover, we present a more accurate way of deriving answers for
logarithm using square and shift method.

Keywords: Fully Homomorphic Encryption, Logarithm, TFHE, Cloud
Security

1 Introduction

There has been a significant increase in the demand defending one’s privacy as
the development of data mining techniques evolve rapidly in our current society.
Needless to say, privacy issue has become one of the world’s controversy that
has to be overcome from any type of adversaries. In this response, many of
the current researches such as differential privacy focuses on data mining while
preserving privacy [1]. Although differential privacy has achieved remarkable
results in respect to protecting original data against malicious data analyst,
there still exist limitations in protecting against malignant server [2].

Homomorphic Encryption(HE) is one of the solutions that provide perfect
security between the user and the server in the aid of profound mathematical
background. This is due to the fact that HE performs operation with encrypted
messages sent by the user and returns the outcome without obtaining any knowl-
edge. However, with the perfect scheme that HE has, it struggles with time that
takes to perform even basic operations such as addition, subtraction, multipli-
cation and division. Fortunately, TFHE(Fast Fully Homomorphic Encryption
over the Torus) library developed by Chillotti et al. has speed up operations in
great amount by applying gate-by-gate bootstrapping technique, saving time in
experiments [3][4]. However, only a few operations such as AND, OR, NOT and
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etc have been designed, troubleshooting other developers’ inflow in the research
field.

Thus, our goal of this paper is to build logarithm operation using TFHE
library to further contribute in building up HE library functions. We utilized
Taylor expansion of three to five terms to approximate logarithm function and
compared their speed and accuracy, respectively. Furthermore, we developed
more accurate way of obtaining result of logarithm by using square and shift
method, having inspired by the idea from [5]. In the end, we will compare their
speed and accuracy to conclude optimal operation for logarithm among the two
approaches that we have presented.

2 Background

In this section, we lay out brief explanation of HE and FHE. Next, we discuss
about approximation of logarithm with Taylor series in terms of its mathematical
basis in plaintext. Finally, the analysis of shift and square method is presented
in the same manner.

2.1 Homomorphic Encryption

Homomorphic Encryption is an encryption scheme based on the property that
decryption of operations on ciphertexts matches the result of the operations
performed on the plaintexts. In other words, it can be written as x

�
y =

D[E[x]
�
E[y]] where E[·] and D[·] denote encryption and decryption, respec-

tively. Specifically, in the case of cloud computing system, one can query a task
with his or her plaintexts to a server without revealing them. The server merely
performs the task of the ciphertexts given and returns the outcome to the user
without being informed of any clue.

Various HE scheme and libraries have been proposed, where the first Homo-
morphism was introduced by Rivest, Adleman, and Dertouzou in 1978 [6]. Since
then, HE has contrived a way to deal with numerous limitations including noise
accumulation on encryption stage, which had to restrict number of operations.
The problem was solved by bootstrapping procedure proposed by Gentry sug-
gesting FHE(Fully Homomorphic Encryption), which effectively removes noise
each time encryption operation is performed [7].

TFHE library TFHE(Fast Fully Homomorphic Encryption over the Torus)
library, developed by Chillotti et. al is one of the open source libraries based
on FHE. The library allows to perform bootstrapping in less than a second,
boosting speed to save lots of time for implementation. Basically, the library
provides secret keys and cloud keys for private encryption and secure export
to the server, respectively. With private keys, the message is safely encrypted
and outsourced to the cloud using the public key. The cloud performs operation
task that the user requested and returns the outcome without revealing any
information of the data.
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By substituting (5) into x = 2y1 , we obtain

x = 2(2
−1(b1+2−1(b2+2−1(b3+··· ))) (6)

From this point, we can recursively extract bits of log2x by square and shift
method.

In our first step of iteration, we square x to obtain first bit of y1.

x2 = 2b1 × 22
−1(b2+2−1(b3+2−1(b4+··· ))) (7)

Since b1 is either 0 or 1, we can separate into two cases for the analysis of bits
of y1.

1. If b1 = 0, then x2 = 22
−1(b2+2−1(b3+2−1(b4+··· ))).

2. If b1 = 1, then x2 = 2× 22
−1(b2+2−1(b3+2−1(b4+··· ))).

Both of the equation share the common factor 22
−1(b2+2−1(b3+··· )) ∈ [1, 2) which

implies that x2 is larger than or equal to 2 if and only if b1 = 1, otherwise b1 = 0.
In our next step, we analyze the value of x2 and if x2 is greater than or

equal to 2, we divide x2 by 2 with its mantissa set to 1. For other cases,
leave x2 as it is and set mantissa to 0. In this way, we are left with x2 =
22

−1(b2+2−1(b3+2−1(b4+··· ))) at the end of the second step. The repetition follows
and thus we are able to recursively apply the steps to extract the remaining bits
of y1.

3 Implementation Method

Representation of array in TFHE library TFHE performs operations on
a bit-by-bit basis in accordance with the other FHE cryptosystems. However,
TFHE represents an array in the inverse direction thereby positioning msb(most
significant bit) to the far right.

Notation of HE operations In this paper, we performed several HE opera-
tions to implement the approaches for designing logarithm. Table 1 elaborates
notation of HE operations to prevent confusion with plaintext operations.

3.1 Implementation of Taylor series expansion

Taylor series is a power series that are calculated from the values of the deriva-
tives of a function at a single point. The problem arises when we attempt to
draw the first value of equation (1), f(a). The term contains logarithm that is
unobtainable except at a point a = 1, since ln 1 = 0 . Thus, we have only taken
at the single point a = 1 for approximation.

In order to design logarithm with Taylor expansion in Homomorphic scheme,
it is crucial to consider time complexity regarding gate and arithmetic opera-
tions. Since multiplication and division operation takes considerably longer time

Logarithm Design on Encrypted Data with Bitwise Operation 3

2.2 Taylor series expansion approach

It is well-known that Taylor expansion can represent a function in a series as
for approximation. In this sense, the logarithm can be expressed in a linear
combination of polynomials. Therefore, the solution for logarithm can be derived
approximately with the fundamental arithmetic operations.

In general, Taylor series of a real-valued function f(x) that is differentiable
at a real number x = a can be expanded in a power series such that

∞∑
n=1

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · · (1)

where f (n) is denoted by nth derivative of f and n! is denoted by the factorial
of n.

Therefore, since lnx is differentiable for all values of x ∈ (0,∞), it can be
rewritten as a power series at a = 1 such that

lnx =
∞∑

n=1

(−1)n+1 (x− 1)n

n

= x− 1− (x− 1)2

2
+

(x− 1)3

3
− · · ·

where x ∈ (0, 2). logax can be derived by logex
logea

when the value of lnx is obtained.

2.3 Square and shift approach

Square and shift method is adopted as our proposition of the second approach.
The method requires simple basic operations such as shift and addition which
are fast in HE experiment environment.

First, let x, y ∈ R, and the goal is to find y such that

y = logax (2)

logax can be obtained by y = log2x
log2a

since our initial step begins with solving
log2x. Put

y1 = log2x (3)

Now, we normalize y1 to interval [0, 1) in order to apply our algorithm that
requires division and multiplication. Representing y1 in a binary form such that
∀bi of 0 or 1

y1 = b1 × 2−1 + b2 × 2−2 + b3 × 2−3 + · · · (4)

To apply our algorithm, (4) can be represented in a parenthetical nested form
such that

y1 = 2−1(b1 + 2−1(b2 + 2−1(b3 + · · · ))) (5)
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E[x− 1] = E[x]� E[1]
E[(x− 1)2] = E[x− 1]⊗ E[x− 1]

E[(x− 1)3] = E[(x− 1)2]⊗ E[x− 1]

...

E[(x− 1)n−1] = E[(x− 1)n−2]⊗ E[x− 1]

E[(x− 1)n] = E[(x− 1)n−1]⊗ E[x− 1]

Next, each of the terms E[(x − 1)n] are divided using HomDiv operation
with its corresponding divisor E[n], respectively. Then, E[lnx] can be obtained
using Homomorphic addition and subtraction as follows.

E[lnx] = E[x− 1]� E[(x− 1)2]

E[2]
⊕ E[(x− 1)3]

E[3]
� · · · (8)

The general case of Taylor series for HE is listed in the following algorithm.

Algorithm 1 Taylor series approximation of Logarithm

– Input : n-bit real number x, number of terms used for approximation n
– Output : logex

1: Create n divisors in array rows.
2: HomSub E[x] by E[1] to obtain E[x− 1].
3: HomMult E[x− 1] itself to collect E[x− 1], E[x− 1]2, · · · , E[x− 1]n

4: for i = 1 : n do
5: E[output(i)] ← HomDiv(E[x− 1]i,E[i])
6: end for
7: Perform

∑n
i=1(−1)i+1E[output(i)] and return the value.

3.2 Implementation of square and shift method

Since the input value x is encrypted to E[x], it is necessary to figure out digit of
E[x] to shift to a normalized form where E[x] ∈ [1, 2). When the value of position
of msb is obtained, we can shift E[x] into our desired form. Thus, our algorithm
can be categorized into four main parts in the following :

1. Normalization of E[x] is performed.
2. Application of square and shift method is conducted to extract bits of E[y],
where y = log2x.
3. Obtain integer part of normalized E[y].
4. Divide E[y] by E[log2a] to obtain E[logax]
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Table 1: Notation of HE functions and symbols

Operation HE function Symbol

AND bootsAND �
NOT bootsNOT �

Addition HomAdd ⊕
Subtraction HomSub �

Multiplication HomMult ⊗
Division HomDiv �

than the other operations, it is recommended to avoid the operations for design-
ing an efficient algorithm. However, Taylor series contain power sums in which
multiplication operations are frequently performed requiring great amount of
time. Therefore the key point in the implementation of Taylor series are number
of terms to be utilized to approximate logarithm that are directly related to
speed and accuracy. In this sense, we have only taken three to five terms of the
power series for the approximation of logarithm to balance between speed and
accuracy. The time complexity and accuracy will be explained in the discussion
section.

To proceed our algorithm, the first step is to create divisor arrays. It can be
seen at the figure how we designed divisors in an array in the inverse order.

Fig. 1: Design of divisors

Then we need to build each terms of Taylor series. Specifically, Homomor-
phic property and its related operations are conducted as it can be seen in the
following :
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E[x− 1] = E[x]� E[1]
E[(x− 1)2] = E[x− 1]⊗ E[x− 1]

E[(x− 1)3] = E[(x− 1)2]⊗ E[x− 1]

...

E[(x− 1)n−1] = E[(x− 1)n−2]⊗ E[x− 1]

E[(x− 1)n] = E[(x− 1)n−1]⊗ E[x− 1]

Next, each of the terms E[(x − 1)n] are divided using HomDiv operation
with its corresponding divisor E[n], respectively. Then, E[lnx] can be obtained
using Homomorphic addition and subtraction as follows.

E[lnx] = E[x− 1]� E[(x− 1)2]

E[2]
⊕ E[(x− 1)3]

E[3]
� · · · (8)

The general case of Taylor series for HE is listed in the following algorithm.

Algorithm 1 Taylor series approximation of Logarithm

– Input : n-bit real number x, number of terms used for approximation n
– Output : logex

1: Create n divisors in array rows.
2: HomSub E[x] by E[1] to obtain E[x− 1].
3: HomMult E[x− 1] itself to collect E[x− 1], E[x− 1]2, · · · , E[x− 1]n

4: for i = 1 : n do
5: E[output(i)] ← HomDiv(E[x− 1]i,E[i])
6: end for
7: Perform

∑n
i=1(−1)i+1E[output(i)] and return the value.

3.2 Implementation of square and shift method

Since the input value x is encrypted to E[x], it is necessary to figure out digit of
E[x] to shift to a normalized form where E[x] ∈ [1, 2). When the value of position
of msb is obtained, we can shift E[x] into our desired form. Thus, our algorithm
can be categorized into four main parts in the following :

1. Normalization of E[x] is performed.
2. Application of square and shift method is conducted to extract bits of E[y],
where y = log2x.
3. Obtain integer part of normalized E[y].
4. Divide E[y] by E[log2a] to obtain E[logax]
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Algorithm 3 Algorithm for Logarithm using square and shift method

– Input : Normalized E[x] and base a
– Output : E[logax]

1: for i = 0: length
2

− 1 do
2: MC ← C ⊗ C
3: final[i] ← MC[ length

2
] // extract bits of log2x

4: lb ← LeftShift(MC)
5: x � lb ← MC[ length

2
]

6: nx ← bootsNOT (MC[ length
2

]) � MC)
7: C ← x ⊕ nx
8: end for
9: for j = 0: length

2
− 2 do

10: final[j + length
2

] ← out sum[j] // integer part of log2x
11: end for
12: result ← HomDiv(final, log2a)

4 Experimentation Result

In this section, the method proposed in the previous section is verified through
experiments. Experimental environment was implemented in i7-7700 3.60GHz,
16.0GB RAM, Ubuntu 16.04.3 LTS, and the actual implementation was on
TFHE version 1.0. The section provides detailed results of the comparison of
the two methods regarding their time complexity and accuracy.

We start from Taylor series method elucidating accuracy in respect to the
number of terms. Secondly, accuracy of the square and shift method will be
explained and finally the time complexity of the two methods will be analyzed.

4.1 Accuracy of Taylor series method

Our method approximated logarithm at a single point, a = 1, which produced
a very close likeliness result in a small neighborhood of x, where x ∈ (0.5, 1.5)
with actual logarithm function that can be explicitly checked from figure 3.(a).

In addition, the accuracy in a small boundary increases as more terms of Tay-
lor series are added, which can be seen from the figure 3.(b) with the proximate
view of figure 3.(a).

lnx = x− 1− (x− 1)2

2
+

(x− 1)3

3
− · · ·+ (−1)n+1 (x− 1)n

n
+O(xn+1)

∴ error = lnx−
n∑

k=1

(−1)k+1 (x− 1)k

k
= O(xn+1)

However, the distinction between the Taylor series and logarithm becomes
more clear with x ∈ (2,∞), since the error, O(xn+1) diverges as x goes to the
infinity. In short, our approach of Taylor expansion can be applied in a small
neighborhood of a = 1 with high accuracy.

Logarithm Design on Encrypted Data with Bitwise Operation 7

Algorithm 2 Algorithm for normalization of E[x]
– Input : n-bit real number x
– Output : Normalized E[x]

1: Larger than or equal compare E[x] with E[2−
length

2
+1], E[2−

length
2

+2], · · ·
E[2−

length
2

−1] and store their values in output array.
2: Add all the values of output elements and put it in out sum.
3: Subtract out sum by E[ length

2
] and save the value at out sum.

4: Build Shift variables S and their corresponding shifted b to A.
5: Perform Equal comparison of S and out sum and store it in EQ.
6: for all EQ and its corresponding A, execute EQ � A and store it in A.
7: Add all the values of A elements and save it in C.

Normalization Algorithm 2 illustrates normalization of E[x] by shift operation.
We perform Homomorphic larger than or equal comparison in the first stage,
where the outcome of the function yields E[1] if E[x] is greater than or equal

to E[2−
length

2 +1], E[2−
length

2 +2], · · · E[2
length

2 −1] and otherwise E[0]. By summa-
tion of all the outcomes and deduction of E( length2 ) yields E(out sum) which
is the desired number of shift to the normalized E[x]. It might be convenient
to perform E[2out sum] ⊗ E[x], however, regarding efficiency, it takes more time
considering multiplication operation involved. Thus, we propose a more efficient
way to shift E[x] by utilizing AND operation, which takes very short amount of
time compared to the multiplication operation. Next, we define corresponding
shift variable and its shifted outcome of E[x], A to iteratively perform equal
comparison. The equal comparison operation of the shift variable and out sum
returns EQ, where EQ is E[1] if two comparer is the same and otherwise E[0].
Then, bitwise operation of EQ�A and their summation gives the value of shifted
outcome of E[x].

Square and shift method In plaintext, we can determine whether x2 is greater
than or equal to 2, which then we can decide the direction of shift operation.
Specifically length

2 th bit of MC is decisive since MC[ length2 ] is the extracted bit
of y and also it determines whether x2 is over than 2. However, it is not possible
to use if condition to decide the shift direction of E[x2] in ciphertext. Therefore,
MC[ length2 ]� lb⊕MC[ length2 ]�MC is applied either to obtain left shift of x or
to obtain x without the shift operation.

Integer part of log2x is to simply copy out sum array. This is due to the
fact that the value of out sum is equal to finding digit where the digit in binary
representation of the outcome represents the integer part of log2 x. Lastly, it
requires division to acquire loga x which is the result of log2 x divided by log2 a.
This is because logax = log2x

log2a
.
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Algorithm 3 Algorithm for Logarithm using square and shift method

– Input : Normalized E[x] and base a
– Output : E[logax]

1: for i = 0: length
2

− 1 do
2: MC ← C ⊗ C
3: final[i] ← MC[ length

2
] // extract bits of log2x

4: lb ← LeftShift(MC)
5: x � lb ← MC[ length

2
]

6: nx ← bootsNOT (MC[ length
2

]) � MC)
7: C ← x ⊕ nx
8: end for
9: for j = 0: length

2
− 2 do

10: final[j + length
2

] ← out sum[j] // integer part of log2x
11: end for
12: result ← HomDiv(final, log2a)

4 Experimentation Result

In this section, the method proposed in the previous section is verified through
experiments. Experimental environment was implemented in i7-7700 3.60GHz,
16.0GB RAM, Ubuntu 16.04.3 LTS, and the actual implementation was on
TFHE version 1.0. The section provides detailed results of the comparison of
the two methods regarding their time complexity and accuracy.

We start from Taylor series method elucidating accuracy in respect to the
number of terms. Secondly, accuracy of the square and shift method will be
explained and finally the time complexity of the two methods will be analyzed.

4.1 Accuracy of Taylor series method

Our method approximated logarithm at a single point, a = 1, which produced
a very close likeliness result in a small neighborhood of x, where x ∈ (0.5, 1.5)
with actual logarithm function that can be explicitly checked from figure 3.(a).

In addition, the accuracy in a small boundary increases as more terms of Tay-
lor series are added, which can be seen from the figure 3.(b) with the proximate
view of figure 3.(a).

lnx = x− 1− (x− 1)2

2
+

(x− 1)3

3
− · · ·+ (−1)n+1 (x− 1)n

n
+O(xn+1)

∴ error = lnx−
n∑

k=1

(−1)k+1 (x− 1)k

k
= O(xn+1)

However, the distinction between the Taylor series and logarithm becomes
more clear with x ∈ (2,∞), since the error, O(xn+1) diverges as x goes to the
infinity. In short, our approach of Taylor expansion can be applied in a small
neighborhood of a = 1 with high accuracy.
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Table 2: Error bound and significant figures

Number of bits 8 16 32

Error bound 2−3 2−7 2−15

Significant figures 1st of integer 2nd of mantissa 4th of mantissa

4.3 Time complexity between two methods

In our experiment, it appears that there exists linear relationship between data
length and logarithm of time. In terms of Taylor series approximation, if the
number of bits increases by n times, the performance time increases by approxi-
mately n2 time. However, in the case of square and shift method, if the number
of bits increases by n times, the execution time increases by roughly n3. There-
fore, the time difference of the two methods is O(n3). Figure 6 visualizes the
comparison of the two mechanisms with respect to their execution time.

Fig. 6: Comparison of execution time

5 Conclusion

In this paper, we introduced two methods for constructing HE of logarithm
and compared their performance time and accuracy through experiments. We

Logarithm Design on Encrypted Data with Bitwise Operation 9

(a) Distant figure of Taylor series (b) Close-up figure of Taylor series

Fig. 3: Comparison of Taylor series approximation and true value of logarithm

4.2 Accuracy of square and shift method

The approximation using square and shift method provides highly accurate so-
lution for logarithm that can be noticeably viewed from figure 5.(a). The mech-
anism extracts length

2 − 1 bits of the correct answer for the logarithm.

(a) Distant figure of logarithm (b) Close-up figure of logarithm

Fig. 5: Comparison of square and shift approximation and true value of logarithm

Figure 5.(b) illustrates the proximate view of figure 5.(a) where x ∈ (26.5, 30)
with square and shift design in a cascade shape. The pattern is derived from the
design of our algorithm that length

2 th bit of mantissa are rounded off. Therefore,

error bound of the mechanism is length
2 . The following table summarizes error

bound and significant figures of its corresponding bits.
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Table 2: Error bound and significant figures

Number of bits 8 16 32

Error bound 2−3 2−7 2−15

Significant figures 1st of integer 2nd of mantissa 4th of mantissa

4.3 Time complexity between two methods

In our experiment, it appears that there exists linear relationship between data
length and logarithm of time. In terms of Taylor series approximation, if the
number of bits increases by n times, the performance time increases by approxi-
mately n2 time. However, in the case of square and shift method, if the number
of bits increases by n times, the execution time increases by roughly n3. There-
fore, the time difference of the two methods is O(n3). Figure 6 visualizes the
comparison of the two mechanisms with respect to their execution time.

Fig. 6: Comparison of execution time

5 Conclusion

In this paper, we introduced two methods for constructing HE of logarithm
and compared their performance time and accuracy through experiments. We
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conclude that the square and shift mechanism can be more generally utilized
for Homomorphic logarithm. Even though Taylor series’ execution has lighter
computation than the square and shift method, its accuracy is low in the most
cases except the neighborhood of a = 1.

In the case of Taylor series, high accuracy in the neighborhood of a = 1 is
the motivation of adhering the same strategy that can be applied not only at a
point a = 1, but all the intervals of x. In this way, we can obtain more accurate
answers for logx. Specifically, the idea is to build Homomorphic operation of nth
derivatives and find the value of ln a from the equation (1) in section 2.

Square and shift method can be better designed with increased number of
significant digits by rearranging number of bits of mantissa. This will facilitate
enlargement of error bounds, thereby escalating accuracy.

6 Future Application

The future aspect of the design of logarithm is its high applicability to vari-
ous fields of study because it is one of the fundamental operations. One way
is to design exponential function with the similar algorithm that we have pre-
sented. The special case of Taylor expansion, namely Maclaurin series, applies
to establishment of exponential function.

ax = 1 +
x ln a

1!
+

(x ln a)2

2!
+

(x ln a)3

3!
+ · · · (9)

Likewise, it is necessary to define number of terms to determine accuracy and
speed for approximation.

Moreover, in a a broader aspect, logarithm can be associated with data sci-
ence and machine learning [8]. Particularly, logistic regression is one of the exam-
ples that logarithm can be used. In such case, we can apply the log operation to
remove the exponents of the likelihood function to a linear combination [9][10].
With the proper design of exponential function and logarithm, logistic regres-
sion can be established so that users without any knowledge of HE can possibly
request data analysis to the server in the future.
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Abstract. The virtualization obfuscation technique is known to pos-
sess excellent security among software protection techniques. However,
research has shown that virtualization obfuscation techniques can be ana-
lyzed by automated analysis tools because the deobfuscate virtualization
obfuscation methodology is fixed. In this situation, additional protec-
tion techniques of the virtualization structure have been studied to sup-
plement the protection strength of virtualization obfuscation. However,
most of the proposed protection schemes require a special assumption or
significantly increase the overhead of the program to be protected.
In this paper, we propose a delayed analysis method for a lightweight vir-
tualization structure that does not require a strong assumption. Hence,
we propose a new virtual code protection scheme combining an anti-
analysis technique and dynamic key, and explain its mechanism. This
causes correspondence ambiguity between the virtual code and the han-
dler code, thus causing analysis delay. In addition, we show the result of
debugging or dynamic instrumentation experiment when the additional
anti-analysis technique is applied.

Keywords: Virtualization Obfuscation · Dynamic Key · Anti-Analysis
· Software Protection.

1 Introduction

1.1 Motivation

In modern society, Information technology is rapidly developing, and developers
are producing software according to demand. Software produced/sold can only
be used with a valid license key. However, in the man at the end (MATE) en-
vironment[1] as in Fig. 1a, the malicious user analyzes this software for his own
benefit, as shown in Fig. 1b, obtains the internal algorithm and sensitive data,
and uses it without payment. In addition, a malicious user can cause monetary
damage to a developer by transforming an internal algorithm to create similar
software and distribute. Therefore, it is necessary to study software protection
techniques to cope with malicious users. Various kinds of software protection
techniques have been studied [2][3][4]. Among them, software obfuscation is a
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1 Introduction

1.1 Motivation

In modern society, Information technology is rapidly developing, and developers
are producing software according to demand. Software produced/sold can only
be used with a valid license key. However, in the man at the end (MATE) en-
vironment[1] as in Fig. 1a, the malicious user analyzes this software for his own
benefit, as shown in Fig. 1b, obtains the internal algorithm and sensitive data,
and uses it without payment. In addition, a malicious user can cause monetary
damage to a developer by transforming an internal algorithm to create similar
software and distribute. Therefore, it is necessary to study software protection
techniques to cope with malicious users. Various kinds of software protection
techniques have been studied [2][3][4]. Among them, software obfuscation is a
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– As encryption and decryption are applied in units of basic blocks, the perfor-
mance degradation is less than when encryption and decryption are applied
in units of bytecodes.

– The anti-analysis technique used in the proposed virtualization obfuscation
technique cannot easily enter the virtualization structure and the dynamic
key additionally obscures the correspondence relationship between the vir-
tual code and the handler code. This is because there’s only one basic block
that is revealed in decrypted form at a time; thus, the functionality analysis
can be effectively delayed until an attacker acquires all basic blocks.

1.3 Paper Organization

The paper is organized as follows: Section 2 introduces the related work and
summarizes the limitations of each study. Section 3 explains the background
knowledge required to understand this paper, and section 4 provides an overview
of VODKA and its detailed description. In section 5 and section 6 respectively,
we present a VODKA implementation and a security analysis of the proposed
technique. Finally, section 7 presents the conclusions.

2 Related Work

[2] proposed a virtualization obfuscation technique that divides the virtualization
registers into two structures and adds a virtual code called a register rotation
instruction (RRI) to complicate the analysis of the virtual registers. Here, RRI
is a self-generated instruction that translates the position of a register allocated
to a virtualization structure. In this example, the position of a virtual register
stored in memory is transformed according to an argument value in the RRI.
However, a limitation exists in which the correspondence between the virtual
code and the handler code cannot be protected.

[3] presents various versions of virtualization structure for each level. As
the level increases, the strength of the cryptographic primitives used becomes
stronger; this also strengthens the security of the virtualization structure and
allows the user to specify the virtualization level according to the software to
be protected. However, even in the final version with the highest protection
strength, the security of the static key is required to be secured. The limitation
of [3] lies in establishing these strong assumptions.

[4] is a technique for creating various virtualization structures in software
and selecting one at execution time. At each execution, the protection chooses a
different virtualization structure to defend against a cumulative attack. A cumu-
lative attack is an attack that finds information about protection techniques in
relatively simple software with the same protection technique and simplifies the
analysis of more complex software using this information. In [4], the performance
degradation depends on the number of virtualization structures created in the
applied software. This technique has a limitation in that no separate protection
technique is applied to the selection algorithm of the virtualization structure.

2 J.Y Lee et al.

(a) Man at the end (b) Attacker tries to reverse program

Fig. 1: Target to protect environment(a) and attacker situation(b)

technique that has been studied to delay the software analysis time. Software
obfuscation techniques are used to protect the intellectual property of develop-
ers. Obfuscation divided into four categories [5][6], which are layout obfuscation,
data obfuscation, control-flow obfuscation, and preventive obfuscation. A study
is available that gathers the most information of obfuscated programs by per-
forming dynamic analysis other than the virtualization obfuscation technique
among control-flow obfuscation techniques. Although the virtualization obfus-
cation technique is known to possess a higher degree of protection compared to
other obfuscation techniques, the technique is not always secure; many previ-
ous researchers have identified the limitations of virtualization obfuscation and
presented the results of its deobfuscation [7][8][9][10][11].

This is because the analysis method is somewhat fixed when the virtualiza-
tion structure is revealed statically, and many additional protection techniques
of the virtualization structure have been studied as a countermeasure. However,
the existing additional protection schemes for virtualization structure proposed
in the past are most likely to require a strong assumption or significantly increase
the performance overhead of a protected program. We will introduce these stud-
ies in section 2.

In this paper, we propose a delayed analysis method for a lightweight virtual-
ization structure that does not require a strong assumption. Hence, we propose
a new virtual code protection scheme combining an anti-analysis technique and
dynamic key, and explain its mechanism. The protection target herein is software
containing important algorithms or important data (e.g. license key).

1.2 Contribution

– We herein present the existing anti-analysis techniques and conduct an ex-
periment to prevent the analysis using various analysis tools. The experi-
mental results are used as a basis for protecting the virtualization structure
herein as well as a basis for the future design of new software protection
schemes.

– The proposed virtualization obfuscation technique provides code integrity
and the anti-analysis of protected software by applying code encryption that
combines anti-analysis and dynamic key.
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– As encryption and decryption are applied in units of basic blocks, the perfor-
mance degradation is less than when encryption and decryption are applied
in units of bytecodes.

– The anti-analysis technique used in the proposed virtualization obfuscation
technique cannot easily enter the virtualization structure and the dynamic
key additionally obscures the correspondence relationship between the vir-
tual code and the handler code. This is because there’s only one basic block
that is revealed in decrypted form at a time; thus, the functionality analysis
can be effectively delayed until an attacker acquires all basic blocks.

1.3 Paper Organization

The paper is organized as follows: Section 2 introduces the related work and
summarizes the limitations of each study. Section 3 explains the background
knowledge required to understand this paper, and section 4 provides an overview
of VODKA and its detailed description. In section 5 and section 6 respectively,
we present a VODKA implementation and a security analysis of the proposed
technique. Finally, section 7 presents the conclusions.

2 Related Work

[2] proposed a virtualization obfuscation technique that divides the virtualization
registers into two structures and adds a virtual code called a register rotation
instruction (RRI) to complicate the analysis of the virtual registers. Here, RRI
is a self-generated instruction that translates the position of a register allocated
to a virtualization structure. In this example, the position of a virtual register
stored in memory is transformed according to an argument value in the RRI.
However, a limitation exists in which the correspondence between the virtual
code and the handler code cannot be protected.

[3] presents various versions of virtualization structure for each level. As
the level increases, the strength of the cryptographic primitives used becomes
stronger; this also strengthens the security of the virtualization structure and
allows the user to specify the virtualization level according to the software to
be protected. However, even in the final version with the highest protection
strength, the security of the static key is required to be secured. The limitation
of [3] lies in establishing these strong assumptions.

[4] is a technique for creating various virtualization structures in software
and selecting one at execution time. At each execution, the protection chooses a
different virtualization structure to defend against a cumulative attack. A cumu-
lative attack is an attack that finds information about protection techniques in
relatively simple software with the same protection technique and simplifies the
analysis of more complex software using this information. In [4], the performance
degradation depends on the number of virtualization structures created in the
applied software. This technique has a limitation in that no separate protection
technique is applied to the selection algorithm of the virtualization structure.
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Table 1: Comparing static and dynamic keys
Method Advantages Disadvantages Key Generation Point

Dynamic Key

- Static analysis can
not obtain Informa-
tion about the key
- It has the effect
of verifying the in-
tegrity according to
the components

Increases the pro-
gram overhead to
higher than that of
static Key

During program exe-
cution

Static Key
Causes low perfor-
mance degradation

An attacker can re-
verse the program to
easily obtain the key

Always in the code
section

integrity (anti-analysis). Finally, the flow-based key can provide additional flow
integrity (control-flow integrity). However, because the time-based key can be
misleading according to the software time measurement method and the flow-
based key also can protect anti-analysis routine but compared to code-based key,
it is more complicated to be implemented and causes more overhead as well. So,
we propose a scheme using the code-based dynamic key.

3.3 Dynamic Binary Instrumentation (DBI)

Many limitations exist in software manual analysis. Hence, automated software
analysis tools are required. This section describes the automatic software ana-
lyzer DBI and introduces the DBI’s representative tool, i.e., Intel’s Pintool.

DBI is a method of analyzing binary behaviors when executing software by
inserting an instrumentation code in the software. In most cases, the instrumen-
tation code will be entirely transparent to the software that it is injected to. This
highlights one of the key differences between static binary analysis and dynamic
binary analysis. Rather than considering what may occur, dynamic binary anal-
ysis has the benefit of operating on what actually occurs. DBI cannot analyze
the overall code execution path of the software, but it compensates for these
shortcomings by providing more detailed execution states [14].

A typical DBI tool is Intel’s Pintool (PIN). PIN uses a large set of APIs
called Pintool that can be used to write customized plugins for analysis. PIN’s
instrumentation engine allows Pintool to insert a customized plugin. The plugin
can intercept the execution of a target program to insert user-defined code such
as instruction counting, dynamic-link library (DLL) counting, memory writing
and instruction collecting. Other debuggers or instruction tracing tools are avail-
able for behavioral analysis, but many reversers used Pintool because it can be
customized according to the specific conditions, instead of a simple instruction
or function (including DLL) tracking.

4 J.Y Lee et al.

3 Background

3.1 Virtualization Obfuscation

Virtualization obfuscation embeds a virtualization structure within the software
and virtualizes the protected code, allowing the virtual code that cannot be
executed on a typical CPU to execute.

In general obfuscation techniques, because packing or encrypted codes or
data are restored to their original form, they can be restored through dynamic
analysis. However, the virtualization obfuscation technique is advantageous in
that it is resistant to dynamic analysis because the virtualized code is not re-
stored to the original code. However, because the performance degradation may
occur during the emulation of virtual code by inserting a virtualization structure,
it is not often used with other additional protection techniques.

When applying the virtualization obfuscation technique, the following com-
ponents are inserted into the software.

– Dispatcher
• Dispatcher involves fetching/decoding an virtual code from memory and
jumping to the corresponding handler code segment.

– Virtual Code
• It is the code that modifies the original code to be protected to enable
the decoding by the dispatcher. Even a simple instruction of a typical
CPU will grow from tens to thousands of lines within the virtualization
structure.

– Handler Code
• The handler code defines the functionality of the virtual code.

– Virtual Register
• The virtualization structure updates the data values similarly to a typical
CPU. Hence, virtual registers exist within the virtualization structure,
and the number of registers depends on the virtualization obfuscator.

– Virtual Stack
• In stack-based virtualization structure, all data-passing operations through
a virtual stack, whereas registers and memory never exchange data di-
rectly.

3.2 Dynamic Key and Static Key

Using the code-based dynamic key in our proposed method can prevent an
attacker from bypassing by modifying the anti-analysis implementation code.
Therefore, in this subsection, we explain the dynamic key and the static key in
Table 1 before explaining the proposed technique.

In this study, we used dynamic keys for protection strength and it caused low
overhead than other related works. This dynamic key can be generated by the
following, among others: code-based key, time-based key, and flow-based key.

Because dynamic keys provide integrity by default, code-based keys provide
code integrity [12] (tamper resistance), and time-based keys[13] provide time
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Table 1: Comparing static and dynamic keys
Method Advantages Disadvantages Key Generation Point

Dynamic Key

- Static analysis can
not obtain Informa-
tion about the key
- It has the effect
of verifying the in-
tegrity according to
the components

Increases the pro-
gram overhead to
higher than that of
static Key

During program exe-
cution

Static Key
Causes low perfor-
mance degradation

An attacker can re-
verse the program to
easily obtain the key

Always in the code
section

integrity (anti-analysis). Finally, the flow-based key can provide additional flow
integrity (control-flow integrity). However, because the time-based key can be
misleading according to the software time measurement method and the flow-
based key also can protect anti-analysis routine but compared to code-based key,
it is more complicated to be implemented and causes more overhead as well. So,
we propose a scheme using the code-based dynamic key.

3.3 Dynamic Binary Instrumentation (DBI)

Many limitations exist in software manual analysis. Hence, automated software
analysis tools are required. This section describes the automatic software ana-
lyzer DBI and introduces the DBI’s representative tool, i.e., Intel’s Pintool.

DBI is a method of analyzing binary behaviors when executing software by
inserting an instrumentation code in the software. In most cases, the instrumen-
tation code will be entirely transparent to the software that it is injected to. This
highlights one of the key differences between static binary analysis and dynamic
binary analysis. Rather than considering what may occur, dynamic binary anal-
ysis has the benefit of operating on what actually occurs. DBI cannot analyze
the overall code execution path of the software, but it compensates for these
shortcomings by providing more detailed execution states [14].

A typical DBI tool is Intel’s Pintool (PIN). PIN uses a large set of APIs
called Pintool that can be used to write customized plugins for analysis. PIN’s
instrumentation engine allows Pintool to insert a customized plugin. The plugin
can intercept the execution of a target program to insert user-defined code such
as instruction counting, dynamic-link library (DLL) counting, memory writing
and instruction collecting. Other debuggers or instruction tracing tools are avail-
able for behavioral analysis, but many reversers used Pintool because it can be
customized according to the specific conditions, instead of a simple instruction
or function (including DLL) tracking.
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Fig. 3: Detailed VODKA code block structure

conditional jump instruction in the end that is not taken or has a call statement;
the second case(algorithm 2) is the case when the executed virtual code block
has JCC in the end that is taken; the definitions of the variables in the algorithm
are the same as those in Table 2.

Table 2: VODKA notations
Notation Description

V Ci i-th Virtual Code Block

Ki i-th Key for Encryption/Decryption

Flag[i] i-th Flag of Encryption/Decryption

EIP Extended Instruction Pointer of Virtual Machine

Algorithm 1: Not taken Case

1 if LastInstruction == CALL ‖ JumpCondition == FALSE then
2 Kn = KeyGeneration(n);
3 Kn−1 = KeyGeneration(n− 1);
4 VirtualCodeEncryption(V Cn−1, Kn−1);
5 VirtualCodeDecryption(V Cn, Kn);
6 Flag[n] = 0;
7 Flag[n− 1] = 1; /* 0: Decryption, 1: Encryption */

8 EIP += 2; /* DEC Handler size */

9 Goto Dispatcher;

The first algorithm is when the branch instruction in the executed block is
CALL or does not taken the JCC instruction. In this case, first the encryp-
tion/decryption key is generated (KeyGeneration), the next block(V Cn) is de-
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Fig. 2: Overview of our approach

4 Approach

The proposed method performs virtualization obfuscation as shown in Fig. 2.

1. The user inserts the markers into the code section for virtualization obfus-
cation to specify the region of obfuscation.

2. The hash value of the designed anti-analysis routine is calculated. Anti-
analysis uses specific functions to determine the presence of debugging. Spe-
cific functions extract properties that appear when performing debugging.

3. The basic virtual code and the newly added DEC handler code are created.
A description of the DEC handler will be provided later.

4. Encryption is performed using the virtual code from step 3 and the hash key
calculated in step 2.

5. Finally, the raw virtual code and encrypted virtual code from step 4 are
inserted into the program(In this paper, we assume that first basic block of
total virtual code is revealed statically), and the designed anti-analysis code
is inserted to end the VODKA operation.

The code block (dotted red box) of the last step is created as shown in Fig. 3.
The code encryption and decryption methods designed are as follows, and here
the basic block is a straight-line code sequence with no branches in except to
the entry and no branches out except at the exit[15]:

Encryption step:

1. Divide the virtual code of the virtualization obfuscation into n basic blocks.
2. Divide the hash value by the number of blocks divided.
3. The virtual code are encrypted with hash key by the XOR operation.

Decryption step: Because the decryption process step is more difficult and
more important than the encryption step, it is explained using two algorithms:
The first case(algorithm 1) is the case when the executed virtual code block has
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Fig. 3: Detailed VODKA code block structure

conditional jump instruction in the end that is not taken or has a call statement;
the second case(algorithm 2) is the case when the executed virtual code block
has JCC in the end that is taken; the definitions of the variables in the algorithm
are the same as those in Table 2.

Table 2: VODKA notations
Notation Description

V Ci i-th Virtual Code Block

Ki i-th Key for Encryption/Decryption

Flag[i] i-th Flag of Encryption/Decryption

EIP Extended Instruction Pointer of Virtual Machine

Algorithm 1: Not taken Case

1 if LastInstruction == CALL ‖ JumpCondition == FALSE then
2 Kn = KeyGeneration(n);
3 Kn−1 = KeyGeneration(n− 1);
4 VirtualCodeEncryption(V Cn−1, Kn−1);
5 VirtualCodeDecryption(V Cn, Kn);
6 Flag[n] = 0;
7 Flag[n− 1] = 1; /* 0: Decryption, 1: Encryption */

8 EIP += 2; /* DEC Handler size */

9 Goto Dispatcher;

The first algorithm is when the branch instruction in the executed block is
CALL or does not taken the JCC instruction. In this case, first the encryp-
tion/decryption key is generated (KeyGeneration), the next block(V Cn) is de-

The 19th World Conference on Information Security Applications

-139-



VODKA: Virtualization Obfuscation using Dynamic Key Approach 9

(a) Before applying VODKA (b) After applying VODKA

Fig. 4: Before & After applying VODKA

(a) Before code decryption

(b) After code decryption

Fig. 5: The code decrypt process observed by ollydbg

8 J.Y Lee et al.

crypted (VirtualCodeDecryption) to execute the virtual code, and the currently
executed block(V Cn−1) is encrypted to hide the virtual code of it. Finally, set
the Flag value corresponding to the block and modify the EIP register value.
The reason why the value of EIP is added to 2 is that the DEC handler consists
of 1 byte of op-code and 1 byte of the operand.

Algorithm 2: Taken case

1 if LastInstruction == JMP Offset ‖ JumpCondition == TRUE then
2 if Addr(n− 1) ≤ EIP + Offset < Addr(n) then
3 EIP + = Offset;
4 else if EIP + Offset ≥ Addr(n) || EIP + Offset < Addr(n− 1) then
5 Kk = KeyGeneration(k);
6 Kn−1 = KeyGeneration(n− 1);
7 VirtualCodeEncryption(V Cn−1, Kn−1);
8 VirtualCodeDecryption(V Ck, Kk);
9 Flag[k] = 0;

10 Flag[n− 1] = 1;
11 EIP + = Offset;

12 Goto Dispatcher;

The second algorithm, contrary to the first algorithm, taken the JCC in-
struction in the executed block. In this case, two situations exist: the first is to
jump into a block that has already been decrypted, and the second is to jump
to another block which is encrypted. In the first case, one simply changes the
EIP address to the desired address. However, in the second case, a key for de-
crypting the jump target block(V Ck) and a key for encrypting the block(V Cn−1)
containing the jump instruction are generated at (KeyGeneration) function; sub-
sequently, the encryption and decryption (VirtualCodeEncryption, VirtualCod-
eDecryption) function is performed. Finally, the Flag value is set to correspond
to the block and the EIP register value is modified.

5 Implementation

In this section, we demonstrate how VODKA encrypts and decrypts virtual code.
our implement environment OS is Windows 10, building language is C++.

5.1 Code encryption

Fig. 4 shows before and after applying VODKA to the program. Fig. 4a shows
the code with general virtualization obfuscation1 applied, and Fig. 4b shows the
encrypted virtual code with VODKA.
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(a) Before applying VODKA (b) After applying VODKA

Fig. 4: Before & After applying VODKA

(a) Before code decryption

(b) After code decryption

Fig. 5: The code decrypt process observed by ollydbg
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(a) Memory Overhead

(b) Performance Overhead

Fig. 6: Overhead measuring
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5.2 Code decryption

We using Ollydbg observed the process of decrypting the encrypted virtual code.
The result of decrypting is shown in Fig. 5. The red dotted block in Fig. 5a is
the virtual code block encrypted by VODKA. The block is encrypted until it is
executed. When executing the encrypted block, first the encrypted code block
is decrypted using the key, and then the virtual code block is executed. The
decrypted virtual code is shown in Fig. 5b. This whole process uses the newly
defined DEC handler from VODKA.

6 Evaluation

6.1 Performance Analysis

In order to evaluate the additional performance overhead when applying VODKA,
we show the result of measuring execution time after applying basic virtual-
ization(BV) obfuscation, VMProtect[16](VMP), Themida[17](TMIN, with the
fastest virtualization obfuscation option[Red-Tiger]) and VODKA to various
programs. Results are shown in Table 3, Fig. 6a and Fig. 6b.

Table 3: Measuring program execution time

VO: Virtualization Obfuscation Orig: Original, BV: Basic Virtualization,
VMP:VMProtect, TMIN: Themida

Target
program

VO
tool Orig

(ms & KB)
BV

(ms & KB)
VMP

(ms & KB)
TMIN

(ms & KB)
VODKA

(ms & KB)

HelloWorld
0.1800(ms)

7(KB)
0.2885(60.28%↑)
17(142.86%↑)

0.6394(255.22%↑)
745(10,543%↑)

0.2667(48.17%↑)
2,318(33,014%↑)

0.2736(52%↑)
17.7(152%↑)

CRC32
0.1870(ms)

8(KB)
0.3427(83.26%↑)

20(150%↑)
0.1981(5.94%↑)
780(9,650%↑)

0.3216(71.98%↑)
2,346(29,225%↑)

0.4543(142%↑)
24.8(210%↑)

AES
0.2099(ms)
19(KB)

0.4906(133.73%↑)
31(63.16%↑)

1.0107(381.52%↑)
747(3,832%↑)

0.6587(213.82%↑)
2,403(12,547%↑)

0.6260(198%↑)
38.4(101%↑)

Base64
0.2556(ms)

9(KB)
0.5833(128.21%↑)
21(133.33%↑)

1.3368(423.00%↑)
724(7,944%↑)

0.9016(252.66%↑)
2,263(25,044%↑)

0.7663(200%↑)
29.8(231%↑)

StringProcess
0.1992(ms)

7(KB)
0.3539(77.66%↑)
20(185.71%↑)

0.6861(244.43%↑)
725(10,257%↑)

0.7138(258.33%↑)
2,363(33,657%↑)

0.5160(159%↑)
30.1(330%↑)

6.2 Anti-Analysis

Before applying anti-analysis[18][19] to the virtualization obfuscation technique
proposed herein, we implemented2 various anti-analysis techniques and tested

1 https://github.com/nlog2n/x86obfuscator
2 https://github.com/jaeyung1001/Anti-Debugging
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(a) Memory Overhead

(b) Performance Overhead

Fig. 6: Overhead measuring
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6.3 Security Analysis

In this section, we present the security analysis of the proposed VODKA herein.
First, we explain how code tampering is prevented in the software with VODKA;
subsequently, we explain what happens when code tampering occurs, and why
it is safe for static analysis and dynamic analysis.

Tamper Resistance In the proposed VODKA, the anti-analysis routine is em-
bedded; therefore, the attacker can perform the analysis only by modifying the
anti-analysis routine to analyze the protected program. However, VODKA gen-
erates a hash key based on the corresponding anti-analysis routine and proceeds
to encryption/decryption. Fig. 7a is result of execute original program. Fig. 7b is
a result of the executed program applied VODKA without any code tampering.
When the attacker modified anti-analysis code, the correct key is not generated
and cannot execute correctly as shown in Fig. 7c, because the virtual code is not
decrypted correctly. Therefore, the attacker cannot analyze the software while
modifying the anti-analysis code.

(a) Results of original program.

(b) Result execution of program applied with
VODKA.

(c) When a program applied with VODKA has code
modification.

Fig. 7: The execution result of programs

Static Analysis VODKA is protected against static analysis. This is because
the dynamic key is generated only when the software is executing as shown in
Table 1. Therefore, the key is not exposed when analyzing statically. Hence,
VODKA is safe for static analysis because the attacker cannot decrypt the en-
crypted virtual code with only static analysis. However, if an attacker statically
finds key generation routine and calculate the decrypt key to decrypt the code,
it can bypass our mechanism. It is our future work to supplement this.

12 J.Y Lee et al.

them with various analysis tools. Among the frequently used tools currently,
Ollydbg[20], WinDbg[21], Pintool[22], and DynamoRIO[23] were selected as an-
alytic tools. Ollydbg and WinDbg are debugging tools (can only execute on Win-
dow OS), and Pintool and DynamoRIO are DBI tools (can execute on Linux and
Windows OS). The experimental results are shown in Table 4.

Table 4: Anti-analysis test

Method
Anti-Analysis

(Detect: O, Undetect: X)
Ollydbg WinDbg Pintool DynamoRIO

IsDebuggerPresent O O X X

CheckRemoteDebuggerPresent O O X X

OutputDebugString O O X O

OutputDebugStringBug O O X O

FindWindow O O X X

NtSetInformationThread
Debugger Detaching

O O X O

NtQueryInformationProcess
(ProcessDebugFlags)

O O O X

NtQueryInformationProcess
(ProcessDebugPort)

O O X X

Hardware BreakPoints
(SEH)

O O X O

Hardware BreakPoints
(GetThreadContext)

O O X X

RDTSC O O O X

NtQueryPerformanceCounters O X O X

GetTickCount O X X X

timeGetTime O O X X

GetSystemTime O X X X

INT 3 Exception O O X X

INT 2D O O X X

Single Step Detection O O O X

Unhandled Exception Filter O O X X

CloseHandle X O X X

Prefix Handling O O O X

Memory Breakpoints O X O X

ReadTEB O O X O

PEB NtGlobalFlag O O X X

PEB BeingDebugged O O X X

Self-Debugging O O O X
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6.3 Security Analysis

In this section, we present the security analysis of the proposed VODKA herein.
First, we explain how code tampering is prevented in the software with VODKA;
subsequently, we explain what happens when code tampering occurs, and why
it is safe for static analysis and dynamic analysis.

Tamper Resistance In the proposed VODKA, the anti-analysis routine is em-
bedded; therefore, the attacker can perform the analysis only by modifying the
anti-analysis routine to analyze the protected program. However, VODKA gen-
erates a hash key based on the corresponding anti-analysis routine and proceeds
to encryption/decryption. Fig. 7a is result of execute original program. Fig. 7b is
a result of the executed program applied VODKA without any code tampering.
When the attacker modified anti-analysis code, the correct key is not generated
and cannot execute correctly as shown in Fig. 7c, because the virtual code is not
decrypted correctly. Therefore, the attacker cannot analyze the software while
modifying the anti-analysis code.

(a) Results of original program.

(b) Result execution of program applied with
VODKA.

(c) When a program applied with VODKA has code
modification.

Fig. 7: The execution result of programs

Static Analysis VODKA is protected against static analysis. This is because
the dynamic key is generated only when the software is executing as shown in
Table 1. Therefore, the key is not exposed when analyzing statically. Hence,
VODKA is safe for static analysis because the attacker cannot decrypt the en-
crypted virtual code with only static analysis. However, if an attacker statically
finds key generation routine and calculate the decrypt key to decrypt the code,
it can bypass our mechanism. It is our future work to supplement this.
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Dynamic Analysis Dynamic analysis is the most effective method to analyze
software. Software using VODKA can obtain the decryption key of a block when
a basic block is executed by dynamic analysis; however, it requires all revealed
virtual code blocks(V C1, V C2, ..., V Cn) to determine the functionality of the
program. However, VODKA requires at least n times memory dumps to analyze
the functionality of the virtual code since there is no point in time when multiple
blocks are decrypted at once. In addition to the difficulties of basic virtualization
obfuscation analysis, VODKA is safe for dynamic analysis.

7 Conclusion

We herein proposed a delayed analysis method for a lightweight virtualization
structure that does not require strong assumptions. We introduced VODKA, a
new virtualization obfuscation technique combining an anti-analysis technique
and dynamic key. Anti-analysis techniques are directly implemented and tested
with various available analysis tools that is commonly used to provide a basis
for the design of new software protection techniques in the future. For future
work, we will focus on effective attacks against virtualization obfuscation and
its additional protection techniques suggested at related works.
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Abstract. Many state-of-the-art software analysis platforms are built
up based on system emulators owing to the need for effectively ana-
lyzing unknown program (i.e., the execution path exploration). In gen-
eral, malware can equip itself with powerful anti-emulation techniques
to fingerprint the emulated system environment, thereby avoiding run-
time analysis. However, this is not the only use case of anti-emulation.
Recently, software vendors often leverage anti-emulation techniques to
prevent their products reverse-engineered by attackers equipped with
emulators. In this paper, we flip the conventional paradigm and explore
anti-emulation techniques and discuss their efficacy regarding protecting
commercially deployed software against malicious emulators. In this pa-
per, we discuss several ideas of anti-emulation techniques suited for large-
scale commercial software. According to our study, deliberately misalign-
ing the vectorization instruction (e.g., Intel SIMD, ARM NEON) can be
served as a promising emulator detection technique over previous ap-
proaches. Based on the abnormal use of CPU vectorization technology,
we design and implement efficient user-level anti-emulation technique
that outperforms previous methods in three aspects: (i) performance,
(ii) accuracy, and (iii) reliability. To demonstrate the efficacy of our de-
sign, we implemented the detection algorithm as Android JNI library and
tested against 174 ARM-based Android devices and several emulators.

Keywords: Emulator Detection · SIMD · Vectorization · Unaligned Ac-
cess

1 Introduction

Runtime detection of the software running environment is a well-known topic
in the field of reverse-engineering and malware analysis, and so forth. In recent
decades, security researchers devoted their efforts to creating a private environ-
ment to effectively analyze the runtime behavior of complicated binary that can-
not be statically analyzed anubis,ether. To hinder such analysis, anti-emulation
techniques are often utilized by malware to prevent themselves from the anal-
ysis. On the other hand, software vendors also apply anti-emulation techniques
to protect their intellectual properties from software crackers.

Various methods for revealing the emulation environment at runtime has been
previously introduced in both academia and industry. Such techniques are good
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enough for malware, however, they are often inadequate to be utilized for protect-
ing commercially deployed software due to its efficacy. For example, most of the
heuristic-based techniques such as “checking the CPU name, process list, or file-
system artifacts” could be inaccurate and trivially bypassed. Testing a specific
emulator implementation bug can be unreliable depending on the exact emula-
tor version. Checking the elapsed CPU clocks while executing some instructions
are often unreliable due to external interrupts, and even worse, they consume a
lot of detection time thus slow down the application loading time. In academic
literature, the following techniques have been so far introduced: (i) aggregating
various heuristics and statistical information for emulator detection [15, 16], (ii)
using relative (not absolute) timing discrepancies of the kernel-level instructions
that involve architecture specific features [1, 8]. All such previous detection tech-
niques do work for malware detecting the emulated environment. However, we
point out that such methods are unacceptable for commercial software due to
the lack of accuracy and performance overhead.

In this paper, we flip the conventional view of the emulator detection re-
search and focus regarding software vendors protecting their application from
dynamic analysis using system emulator. Anti-emulation technique, in this case,
should satisfy three requirements: (i) emulation detection technique should be
fast enough thus the application loading is not delayed for service, (ii) emulation
detection result should be accurate to prevent service failure, and (iii) emulation
detection technique should not be easily bypassed by attackers who intends to
reverse-engineer the product.

Discovering new anti-emulation technique is not the main contribution part
of this paper as there are so many existing methods already. However, making
a commercially-deployable anti-emulation technique is a non-trivial research is-
sue. The emulator detection techniques introduced in this paper avoid heuristics
and leverage CPU architecture specific features. We introduce three detection
techniques based on (i): context-switch granularity, (ii) translation caching of
guest basic-block, and (iii) deliberate use of unaligned memory access with vec-
torization instructions. Among the three techniques, we find that misaligned
vectorization based detection technique is the most promising regarding detec-
tion speed and accuracy. All the techniques in this paper do not require any
kernel-level privilege, and it is implemented as an Android JNI library to suit
the need of mobile device vendors. To confirm the reliability and deployabil-
ity of the unaligned vectorization based detection technique, we installed our
library code to 174 ARM Android mobile devices of various device vendors. The
contribution of this paper can be summarized as follow:

– This is the first paper that explores the efficacy of emulator detection tech-
niques regarding legitimate software vendors rather than malware.

– We discuss three emulator detection techniques which leverage CPU archi-
tecture specifics and emulator internals.

– We implemented commercially deployable anti-emulation technique as JNI
library and tested against 174 different Android mobile devices and several
emulators.
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enough for malware, however, they are often inadequate to be utilized for protect-
ing commercially deployed software due to its efficacy. For example, most of the
heuristic-based techniques such as “checking the CPU name, process list, or file-
system artifacts” could be inaccurate and trivially bypassed. Testing a specific
emulator implementation bug can be unreliable depending on the exact emula-
tor version. Checking the elapsed CPU clocks while executing some instructions
are often unreliable due to external interrupts, and even worse, they consume a
lot of detection time thus slow down the application loading time. In academic
literature, the following techniques have been so far introduced: (i) aggregating
various heuristics and statistical information for emulator detection [15, 16], (ii)
using relative (not absolute) timing discrepancies of the kernel-level instructions
that involve architecture specific features [1, 8]. All such previous detection tech-
niques do work for malware detecting the emulated environment. However, we
point out that such methods are unacceptable for commercial software due to
the lack of accuracy and performance overhead.

In this paper, we flip the conventional view of the emulator detection re-
search and focus regarding software vendors protecting their application from
dynamic analysis using system emulator. Anti-emulation technique, in this case,
should satisfy three requirements: (i) emulation detection technique should be
fast enough thus the application loading is not delayed for service, (ii) emulation
detection result should be accurate to prevent service failure, and (iii) emulation
detection technique should not be easily bypassed by attackers who intends to
reverse-engineer the product.

Discovering new anti-emulation technique is not the main contribution part
of this paper as there are so many existing methods already. However, making
a commercially-deployable anti-emulation technique is a non-trivial research is-
sue. The emulator detection techniques introduced in this paper avoid heuristics
and leverage CPU architecture specific features. We introduce three detection
techniques based on (i): context-switch granularity, (ii) translation caching of
guest basic-block, and (iii) deliberate use of unaligned memory access with vec-
torization instructions. Among the three techniques, we find that misaligned
vectorization based detection technique is the most promising regarding detec-
tion speed and accuracy. All the techniques in this paper do not require any
kernel-level privilege, and it is implemented as an Android JNI library to suit
the need of mobile device vendors. To confirm the reliability and deployabil-
ity of the unaligned vectorization based detection technique, we installed our
library code to 174 ARM Android mobile devices of various device vendors. The
contribution of this paper can be summarized as follow:

– This is the first paper that explores the efficacy of emulator detection tech-
niques regarding legitimate software vendors rather than malware.

– We discuss three emulator detection techniques which leverage CPU archi-
tecture specifics and emulator internals.

– We implemented commercially deployable anti-emulation technique as JNI
library and tested against 174 different Android mobile devices and several
emulators.
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3 Design

In this section, we introduce three emulator detection techniques that are based
on the architectural design of hardware/emulator namely: (i) context-switch
based detection, (ii) TB-cache based detection, and (iii) unaligned vectorization
based detection. Among the detection methods, the alignment-based technique is
fast, accurate, and reliable than other existing techniques. Therefore it is suited
for commercial application vendors (such as Google or Samsung) for protect-
ing their application from malicious reverse-engineering to crack the software
product.

3.1 Context Switch based Detection

The context switch-based QEMU detection technique leverages the race con-
dition between two threads lacking proper locking mechanism. The technique
does not require any kernel privilege nor depends on timing discrepancy. In
multi-threaded programming, multiple threads are executed together by shar-
ing the CPU time slice given by the scheduler. This is possible because of the
context switch support from the hardware and OS. In general, an involuntary
context switch occurs when an external timer event interrupts the CPU. Based
on the context switching and the QEMU interrupt handling mechanism, we con-
firmed the following facts and designed a method for distinguishing the QEMU
environment.

– QEMU uses basic-block granularity to translate and execute its guest code.
– QEMU does not process an external interrupt while a basic-block of guest

code is being executed.

As mentioned in the background section of this paper, context switching
never happens in the QEMU environment while a basic block is being executed.
However, this behavior is not observed in the real CPU environment. In a nut-
shell, the instructions inside a basic block are executed atomically inside the
QEMU environment, whereas no such atomicity is observed with real hardware.
Using this feature, we can distinguish the QEMU and real CPU by deliberately
running a multi-threaded code that has a race condition problem. We can write
such code by deliberately not using a lock 2 for a critical section consisted of a
single basic block. By running this code, we can quickly reach the race condition
state in a real CPU environment; however, the race condition never occurs in a
QEMU environment. Figure 1 demonstrates this situation in detail.

In Figure 1, a globally shared variable N is increased by one and decreased
by one inside a critical section consisting of a single basic block. If threads enter
this critical section one at a time, we would never observe the N becoming larger
than 1. However, if multiple threads were about to enter this critical section
together at the same time, we could watch the value of N being larger than

2 A lock could be a spinlock, mutex, semaphore, and so forth
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2 Background

2.1 Previously Known Techniques

There are many previously known techniques to distinguish the QEMU execu-
tion environment from real hardware. One of the simplest ways is to look up
various names inside the execution environment. The names could be the CPU
name, device driver name, etc. For instance, QEMU by default uses its unique
CPU name and a device driver name such as QEMU CPU or QEMU HARDDISK. This
approach seems unsatisfactory, yet it is effective against näıve system emulators,
thus it is commonly observed in practice. A timing attack is another well-known
technique for QEMU detection. The simplest and most typical example is to
measure the consumed CPU clock cycle count of an instruction. When an in-
struction is emulated, the consumed CPU clock cycle count for executing the
emulated instruction usually becomes higher than it should be in a real CPU.
The reason is that the emulator translates the single guest instruction into a set
of multiple emulator-generated host instructions 1. If the cycle count exceeds a
predefined normal range, the malware assumes that the execution environment is
not real. Asides from the discussed detection techniques, there are also numerous
additional emulator detection techniques proposed in academia and industry.

2.2 Translation Block Cache

The QEMU (and emulators in general) adopts the concept of translation caching
a so-called Translation Block Cache (TB-cache) that significantly enhances the
emulation performance. Each time when QEMU translates a particular basic
block of the guest program, the translated basic block (TB) is cached to avoid
repeating the same translation process. If the execution flow of the program
inside QEMU encounters the same guest basic block, the translation process can
be omitted, and instead, the translated code from the TB cache can be executed.
This caching mechanism significantly improves the performance of QEMU.

2.3 Vectorization

Vectorization is a CPU technology that supports calculating multiple data with
a single instruction. For example, Intel supports various ”Single Instruction,
Multiple Data (SIMD)” instruction set such as MOVNTPS, MOVAPS to support
vectorization. Similarly, ARM supports NEON instruction set such as VPUSH,

VPOP and so on. The main purpose of vectorization instruction is to improve the
performance of the multimedia application which performs extensive graphics
rendering. Here, we deliberately use such instructions in a prohibited way to
detect emulated software environment.

1 In general, guest indicates an emulated system and host indicates a real hardware-
based system is running emulation software

WISA 2018

-150-



4 Blinded for Review

3 Design

In this section, we introduce three emulator detection techniques that are based
on the architectural design of hardware/emulator namely: (i) context-switch
based detection, (ii) TB-cache based detection, and (iii) unaligned vectorization
based detection. Among the detection methods, the alignment-based technique is
fast, accurate, and reliable than other existing techniques. Therefore it is suited
for commercial application vendors (such as Google or Samsung) for protect-
ing their application from malicious reverse-engineering to crack the software
product.

3.1 Context Switch based Detection

The context switch-based QEMU detection technique leverages the race con-
dition between two threads lacking proper locking mechanism. The technique
does not require any kernel privilege nor depends on timing discrepancy. In
multi-threaded programming, multiple threads are executed together by shar-
ing the CPU time slice given by the scheduler. This is possible because of the
context switch support from the hardware and OS. In general, an involuntary
context switch occurs when an external timer event interrupts the CPU. Based
on the context switching and the QEMU interrupt handling mechanism, we con-
firmed the following facts and designed a method for distinguishing the QEMU
environment.

– QEMU uses basic-block granularity to translate and execute its guest code.
– QEMU does not process an external interrupt while a basic-block of guest

code is being executed.

As mentioned in the background section of this paper, context switching
never happens in the QEMU environment while a basic block is being executed.
However, this behavior is not observed in the real CPU environment. In a nut-
shell, the instructions inside a basic block are executed atomically inside the
QEMU environment, whereas no such atomicity is observed with real hardware.
Using this feature, we can distinguish the QEMU and real CPU by deliberately
running a multi-threaded code that has a race condition problem. We can write
such code by deliberately not using a lock 2 for a critical section consisted of a
single basic block. By running this code, we can quickly reach the race condition
state in a real CPU environment; however, the race condition never occurs in a
QEMU environment. Figure 1 demonstrates this situation in detail.

In Figure 1, a globally shared variable N is increased by one and decreased
by one inside a critical section consisting of a single basic block. If threads enter
this critical section one at a time, we would never observe the N becoming larger
than 1. However, if multiple threads were about to enter this critical section
together at the same time, we could watch the value of N being larger than

2 A lock could be a spinlock, mutex, semaphore, and so forth
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speeds up the emulation performance, it creates a significant timing difference
against a real CPU, thus can be utilized for detecting the emulated environment.

Using this additional layer of the caching system enables us to create a sig-
nificant timing discrepancy regarding self-modifying code that overwrites itself
during its execution. In QEMU, overwriting the code memory breaks the cache
coherence of the TB cache. Therefore, the self-modifying code cannot leverage
the TB cache system of QEMU. When a self-modifying code runs inside the
QEMU environment, the TB cache loses its effectiveness and severely degrades
the performance of code execution speed compared to the non-self-modifying
code.

Similarly to the TB cache of emulators, the hardware cache (e.g., L1) also
experiences degraded performance when a self-modifying code invalidates itself.
However, the impact thereof on the performance is trivial relative to TB cache
invalidation. With high assurance, we can conclude that if the performance of
self-modifying code dramatically deteriorates (i.e., by orders of magnitude) com-
pared to other code; we can reasonably suspect that the running environment is
being emulated.

An example of detection can be performed as follows: Consider two code snip-
pets A: a code fragment consisting of 1,000 lines of ordinary (non-self-modifying)
assembly instructions such as mov, add, and push; and B: a self-modifying code
fragment consisting of 100 lines of the same set of assembly instructions. If we
were to iterate the code execution of A and B numerous times in a real CPU, the
total iteration time of A would be expected to exceed that of B because there
are orders of magnitude more instructions to execute. However, in an emulation
environment, this timing experiment would show the opposite result since the
TB cache would not be utilized in B (self-modifying code) after all.

The advantages of this technique are that it does not require kernel-level
privilege and it is architecture agnostic. Also, mitigating this detection attempt
is practically impossible as the overall emulation performance is significantly af-
fected. However, this technique is inadequate to apply to commercial software
because the detection requires a lot of time for an accurate result, and still,
the accuracy cannot be guaranteed regardless of the hardware environment. We
made a proof-of-concept detection code in C and verified it works successfully
against three system emulators qemu-system-i386/x86 64/arm and several In-
tel CPUs.

3.3 Unaligned Vectorization based Detection

Memory access alignment issue stems from the incapability of earlier (and cur-
rent) CPUs accessing the cache with byte-granularity. For example, some 32-bit
CPU architectures have a 30-bit addressing line for fetching the memory. Due to
the lack of 2 bits, such CPU can access the memory only if the target memory
address is multiple of 4 (100 in binary). For such reason, if the CPU wants to
access a memory address that is not the multiple of 4, the CPU fetches mem-
ory twice and re-assemble the memory contents. Vectorization instructions of
Intel and ARM do not support unaligned memory access at the hardware level

Emulator Detection Techniques for Commercially Deployed Software 5

Fig. 1. Different context switching behavior between real CPU and QEMU. A circle
denotes a thread, and a box denotes a critical section composed of a single basic block.

that of 2. As we discussed above, a guest context switch event does not occur
during basic block execution. As a result, QEMU happens to protect the critical
section (consisting of a single basic block) even if the program does not use a
proper locking mechanism such as mutex or spinlock. However, in a real CPU
environment, we can observe N becoming larger than two, which is an abnormal
race condition state.

This phenomenon does not involve any architectural specifics, and it is in-
evitable to avoid unless the TCG implementation logic translates the guest code
into a single instruction granularity. However, such implementation logic severely
degrades the overall performance. Therefore, it can be utilized as a universal em-
ulation detection technique. Unfortunately, this detection technique requires suf-
ficiently long time (e.g., seconds) to accurately conclude the running environment
(if things are fortunate, race condition state could not occur in real hardware for
a long time). The detection time to increase the accuracy depends on the device.
We made proof-of-concept C code and verified it works successfully against three
system emulators (qemu-system-i386/x86 64/arm) and several Intel CPUs.

3.2 Translation Block Cache based Detection

In general, dynamic binary instrumentation (DBI)-based emulators, including
QEMU, use a code translation caching mechanism to accelerate the performance
(details are explained in the background section). Although this caching system
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speeds up the emulation performance, it creates a significant timing difference
against a real CPU, thus can be utilized for detecting the emulated environment.

Using this additional layer of the caching system enables us to create a sig-
nificant timing discrepancy regarding self-modifying code that overwrites itself
during its execution. In QEMU, overwriting the code memory breaks the cache
coherence of the TB cache. Therefore, the self-modifying code cannot leverage
the TB cache system of QEMU. When a self-modifying code runs inside the
QEMU environment, the TB cache loses its effectiveness and severely degrades
the performance of code execution speed compared to the non-self-modifying
code.

Similarly to the TB cache of emulators, the hardware cache (e.g., L1) also
experiences degraded performance when a self-modifying code invalidates itself.
However, the impact thereof on the performance is trivial relative to TB cache
invalidation. With high assurance, we can conclude that if the performance of
self-modifying code dramatically deteriorates (i.e., by orders of magnitude) com-
pared to other code; we can reasonably suspect that the running environment is
being emulated.

An example of detection can be performed as follows: Consider two code snip-
pets A: a code fragment consisting of 1,000 lines of ordinary (non-self-modifying)
assembly instructions such as mov, add, and push; and B: a self-modifying code
fragment consisting of 100 lines of the same set of assembly instructions. If we
were to iterate the code execution of A and B numerous times in a real CPU, the
total iteration time of A would be expected to exceed that of B because there
are orders of magnitude more instructions to execute. However, in an emulation
environment, this timing experiment would show the opposite result since the
TB cache would not be utilized in B (self-modifying code) after all.

The advantages of this technique are that it does not require kernel-level
privilege and it is architecture agnostic. Also, mitigating this detection attempt
is practically impossible as the overall emulation performance is significantly af-
fected. However, this technique is inadequate to apply to commercial software
because the detection requires a lot of time for an accurate result, and still,
the accuracy cannot be guaranteed regardless of the hardware environment. We
made a proof-of-concept detection code in C and verified it works successfully
against three system emulators qemu-system-i386/x86 64/arm and several In-
tel CPUs.

3.3 Unaligned Vectorization based Detection

Memory access alignment issue stems from the incapability of earlier (and cur-
rent) CPUs accessing the cache with byte-granularity. For example, some 32-bit
CPU architectures have a 30-bit addressing line for fetching the memory. Due to
the lack of 2 bits, such CPU can access the memory only if the target memory
address is multiple of 4 (100 in binary). For such reason, if the CPU wants to
access a memory address that is not the multiple of 4, the CPU fetches mem-
ory twice and re-assemble the memory contents. Vectorization instructions of
Intel and ARM do not support unaligned memory access at the hardware level
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loading, detection process (dereferencing the unaligned pointer with specific in-
struction) is invoked unpredictably. We show that this approach is sufficiently
fast and accurate for commercial application vendors to provide reasonable per-
formance and service quality.

Context switch Translation cache Unaligned vectorization

1.74× 10−2 4.88× 10−4 2.73× 10−4

Table 1. Time consumption benchmark result. The evaluation numbers for Race-
condition and Translation-cache is the minimal elapsed seconds to reach 99% proba-
bility. The evaluation number for Alignment-fault is elapsed seconds with 100% prob-
ability detection.

4 Implementation and Evaluation

In this section, we first measure the speed and accuracy of three detection codes
described in the previous section. Afterward, we focus on explaining the im-
plementation details of unaligned vectorization based emulator detection codes
and showing evaluation results of using our detection technique against ARM
Android devices and emulators.

To measure the speed and accuracy of proposed techniques, we implemented
a proof-of-concept of three detection techniques in C codes which reports if
the execution environment is emulated or not. Table 1 is the average result
of measuring detection timing for each technique under recent Intel hardware.
The evaluation numbers for Context-switch and Translation-cache is the min-
imal elapsed seconds to reach 99% probability, but the evaluation number for
Unaligned vectorization is detection attempt with guaranteed success proba-
bility. The performance and accuracy of context-switch based and translation
cache based technique significantly differs among different hardware environ-
ment. However, the unaligned vectorization based detection technique shows
consistent speed and accuracy thus we further inspect its deployability over var-
ious real devices.

Unaligned vectorization based detection code is implemented as a JNI library
for Android devices. We also implemented Intel version of emulation detector
using SSE instructions, but we focus to ARM-based Android devices in this
paper. The JNI code initially setup signal handler at application load time. Once
the handler is initialized, the application can detect the running environment.
To install a signal handler for catching alignment-fault (SIGBUS of Linux), we
use standard sigaction GLIBC API and register our callback function. The
time consumption of this process is negligible as additionally calling one more
GLIBC API upon process loading. After the signal handler is installed, the
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Fig. 2. Different result for misaligned vectorization in real CPU and emulator. The
alignment fault occurs if CPU is real hardware regardless of kernel. Emulators process
unaligned vectorization although there is no performance gain.

(even with kernel modification for handling alignment feature) thus raises an
application-aware fault. In general, the kernel is capable of handling unaligned
memory access even if the CPU is incapable of handling such type of memory
access. For example, Linux kernel provides an interface for enabling/disabling
faulting behavior upon unaligned access in general purpose instructions.

However, high-performance vectorization operations such as Intel SIMD and
ARM NEON are guaranteed to raise fault upon unaligned access regardless of
kernel configuration. If such failure occurs, the user application is notified by
kernel since CPU is incapable of proceeding execution. The critical insight here
is that software emulators do not suffer from such issues as their implementation
is not designed for performance. As a result, unaligned vectorization inside em-
ulator executes the correct semantic of unaligned vectorization with prolonged
performance. Here, we take advantage of this phenomenon to adequately dis-
tinguish the software-emulated environment and native hardware environment
without any kernel-dependancy.

The design of our detection is as follow: First, we install a fault-handler
to catch the hardware fault signal induced by unaligned vectorization. Once the
handler is installed, the actual detection routine deliberately makes an unaligned
pointer and dereference such pointer with vectorization instructions that are af-
fected by target memory alignment (e.g., MOVNTPS of Intel, VLDMIA of ARM). If
the running environment is emulated, nothing happens upon such memory ac-
cess. However, in the real hardware-based environment, CPU immediately raises
uncontrollable signal and invokes our callback handler. Based on such different
behavior, we decide if the running environment is emulated or not. Figure 2 is
the overall flow process depicting our detection technique based on misaligned
vectorization. Once, the signal handler setup process is done while application

WISA 2018

-154-



8 Blinded for Review

loading, detection process (dereferencing the unaligned pointer with specific in-
struction) is invoked unpredictably. We show that this approach is sufficiently
fast and accurate for commercial application vendors to provide reasonable per-
formance and service quality.

Context switch Translation cache Unaligned vectorization

1.74× 10−2 4.88× 10−4 2.73× 10−4

Table 1. Time consumption benchmark result. The evaluation numbers for Race-
condition and Translation-cache is the minimal elapsed seconds to reach 99% proba-
bility. The evaluation number for Alignment-fault is elapsed seconds with 100% prob-
ability detection.

4 Implementation and Evaluation

In this section, we first measure the speed and accuracy of three detection codes
described in the previous section. Afterward, we focus on explaining the im-
plementation details of unaligned vectorization based emulator detection codes
and showing evaluation results of using our detection technique against ARM
Android devices and emulators.

To measure the speed and accuracy of proposed techniques, we implemented
a proof-of-concept of three detection techniques in C codes which reports if
the execution environment is emulated or not. Table 1 is the average result
of measuring detection timing for each technique under recent Intel hardware.
The evaluation numbers for Context-switch and Translation-cache is the min-
imal elapsed seconds to reach 99% probability, but the evaluation number for
Unaligned vectorization is detection attempt with guaranteed success proba-
bility. The performance and accuracy of context-switch based and translation
cache based technique significantly differs among different hardware environ-
ment. However, the unaligned vectorization based detection technique shows
consistent speed and accuracy thus we further inspect its deployability over var-
ious real devices.

Unaligned vectorization based detection code is implemented as a JNI library
for Android devices. We also implemented Intel version of emulation detector
using SSE instructions, but we focus to ARM-based Android devices in this
paper. The JNI code initially setup signal handler at application load time. Once
the handler is initialized, the application can detect the running environment.
To install a signal handler for catching alignment-fault (SIGBUS of Linux), we
use standard sigaction GLIBC API and register our callback function. The
time consumption of this process is negligible as additionally calling one more
GLIBC API upon process loading. After the signal handler is installed, the
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Name Model OS Vendor CPU
qemu-system-i386 N/A N/A N/A Emulator

qemu-system-x86 64 N/A N/A N/A Emulator
qemu-system-armel N/A N/A N/A Emulator
qemu-system-aarch64 N/A N/A N/A Emulator
AVD Emulator 32bit N/A 7.1.1 N/A Emulator
AVD Emulator 64bit N/A 7.1.1 N/A Emulator
Samsung Galaxy A5 SM-A500F 5.0.2 Samsung armeabi-v7a

Samsung Galaxy J1 Ace SM-J110H 4.4.4 Samsung armeabi-v7a
Samsung Galaxy J7 4G SM-J700F 5.1.1 Samsung armeabi-v7a
Samsung Galaxy Light SGH-T399N 4.4.2 Samsung armeabi-v7a
Samsung Galaxy Note 2 SGH-I317 4.4.2 Samsung armeabi-v7a
Samsung Galaxy Note 3 SM-N900A 4.4.4 Samsung armeabi-v7a
Samsung Galaxy Note 4 SM-N910P 4.4.4 Samsung armeabi-v7a
Samsung Galaxy Note5 SM-N920T 5.1.1 Samsung arm64-v8a
Samsung Galaxy Note8 SM-N950U1 7.1.1 Samsung arm64-v8a
Samsung Galaxy S3 LTE SGH-T999L 4.3 Samsung armeabi-v7a

Samsung Galaxy S4 SGH-I337 4.4.2 Samsung armeabi-v7a
Samsung Galaxy S5 SM-G870A 4.4.2 Samsung armeabi-v7a
Samsung Galaxy S6 SM-G920T 7.0 Samsung arm64-v8a
Samsung Galaxy S7 SM-G930A 6.0.1 Samsung arm64-v8a
Samsung Galaxy S8+ SM-G955U 7.0 Samsung arm64-v8a
Samsung Galaxy S9 SM-G960U1 8.0.0 Samsung arm64-v8a

Samsung Galaxy Tab 4 SM-T530NU 4.4.2 Samsung armeabi-v7a
LG G Flex D950 4.2.2 LG armeabi-v7a
LG G2 D800 4.4.2 LG armeabi-v7a
LG G3 VS985 4.4.2 LG armeabi-v7a

LG Nexus 4 E960 4.4.3 LG armeabi-v7a
LG Nexus 5 D820 6.0 LG armeabi-v7a

LG Optimus L70 MS323 4.4.2 LG armeabi-v7a
LG V10 LG-H901 5.1.1 LG arm64-v8a

Motorola Moto E XT1511 5.1 Motorola armeabi-v7a
Motorola Nexus 6 XT1103 5.1 Motorola armeabi-v7a
Oppo Find 7a X9006 4.3 Oppo armeabi-v7a
Wiko Fever 4G FEVER 5.1 Wiko arm64-v8a
Wiko Lenny 2 LENNY2 5.1 Wiko armeabi-v7a
Wiko Pulp 4G PULP 4G 5.1.1 Wiko armeabi-v7a

Wiko Rainbow 4G RAINBOW 4G 4.4.2 Wiko armeabi-v7a
Wiko Sunset 2 SUNSET2 4.4.2 Wiko armeabi-v7a

Sony Xperia Z4 Tablet SGP712 5.0.2 Sony arm64-v8a
Sony Xperia Z5 E6653 5.1.1 Sony arm64-v8a

Mlais M7 M7 5.0 Alps arm64-v8a
Amazon Fire Phone SD4930UR 4.2.2 Amazon armeabi-v7a
Amazon Kindle Fire C9R6QM 4.4.3 Amazon armeabi-v7a

HTC 10 HTCM10h 6.0.1 HTC arm64-v8a
Ulefone Be Touch 2 Be Touch 2 5.1 Ulefone arm64-v8a

ASUS Nexus 7 ME370T 4.2.1 ASUS armeabi-v7a
Blackberry Priv STV100-1 5.1.1 Blackberry arm64-v8a
Google Pixel Pixel 7.1.2 Google arm64-v8a

HTC Desire 526G+ D526H 4.4.2 HTC armeabi-v7a
HTC One A9 HTCOne A9 6.0.1 HTC arm64-v8a

Huawei Ascend Mate 7 MT7-L09 4.4.2 Huawei armeabi-v7a
Huawei Honor 6 H60-L02 4.4.2 Huawei armeabi-v7a
Huawei Nexus 6P H1511 7.1.2 Huawei arm64-v8a

Huawei P9 EVA-L09 6.0 Huawei arm64-v8a
Intex Aqua Y2 Pro Aqua Y2 Pro 4.4.2 Intex armeabi-v7a

Lava Iris X8 IRIS X8 4.4.2 Iris armeabi-v7a

Table 2. Subset list of deployment tested Android devices (minor variation of device
models are skipped in the list). Correctness of the Unaligned-access based detection
library was confirmed with total 174 devices and several emulators. The code detected
execution environment within 1ms with 100% accuracy.
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actual detection code makes an unaligned pointer (e.g., a 32-bit width pointer
that points valid memory address but the address is not multiple of 32-bit such as
0x10033). After making such pointer, use VLDMIA instruction to dereference such
unaligned pointer. According to our analysis, general ARM instructions such
as LDR/STR supports hardware-level unaligned access since ARMv6. A stack-
based instruction such as LDM/STM lacks the capability of dereferencing unaligned
pointers in general ARM architecture; however it could change depending on
kernel configuration.

The evaluation measures the performance of detection code and the accuracy
of the detection result. To evaluate the performance impact of using the detec-
tion code, we ran microbenchmark to measure the consumed clock cycles for
installing the signal handler and processing time of the hardware signal due to
unaligned vectorization. To evaluate the accuracy of our technique, we applied
our library to test Android application and ran inside 174 different ARM An-
droid devices3 and several emulators including qemu-system-arm and standard
Android AVD emulator. Table 2 summarizes the subset list of the deployment
test result against various Android devices and emulators. Our detection code
always reported accurate result in all cases.

5 Related Work

A number of previous reports discussed the issue of detecting the emulated,
virtualized running environment of a process [1] [12] [8] [11].

5.1 Detecting System Emulator

Detecting System Emulator [1] demonstrated that emulators are not necessarily
stealthier than virtual machines, as suggested by [13] and [14]. They demon-
strated a various kernel-level technique that measures the relative timing per-
formance of privileged instructions. In particular, the paper shows that in a
real machine environment, the CR3 register access time is similar to the access
times of other registers; however, in the QEMU environment, the CR3 access
time is orders of magnitude slower than that of the other registers. On the other
hand, the cache invalidation speed in a real machine environment is orders of
magnitude slower than that of the emulator. The paper additionally discussed
other discrepancies of CPU behavior regarding instruction bugs, model specific
registers, and alignment checking in x86. While the previous discussion regard-
ing alignment check based detection requires kernel modification thus unfit for
commercially deployed application, unaligned vectorization based detection in
this is paper is solely based on user-privileged instructions without any kernel
dependency therefore suited for commercial application deployment.

3 We use Amazon Device Farm for this experiment [21].
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Name Model OS Vendor CPU
qemu-system-i386 N/A N/A N/A Emulator

qemu-system-x86 64 N/A N/A N/A Emulator
qemu-system-armel N/A N/A N/A Emulator
qemu-system-aarch64 N/A N/A N/A Emulator
AVD Emulator 32bit N/A 7.1.1 N/A Emulator
AVD Emulator 64bit N/A 7.1.1 N/A Emulator
Samsung Galaxy A5 SM-A500F 5.0.2 Samsung armeabi-v7a
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Motorola Moto E XT1511 5.1 Motorola armeabi-v7a
Motorola Nexus 6 XT1103 5.1 Motorola armeabi-v7a
Oppo Find 7a X9006 4.3 Oppo armeabi-v7a
Wiko Fever 4G FEVER 5.1 Wiko arm64-v8a
Wiko Lenny 2 LENNY2 5.1 Wiko armeabi-v7a
Wiko Pulp 4G PULP 4G 5.1.1 Wiko armeabi-v7a

Wiko Rainbow 4G RAINBOW 4G 4.4.2 Wiko armeabi-v7a
Wiko Sunset 2 SUNSET2 4.4.2 Wiko armeabi-v7a

Sony Xperia Z4 Tablet SGP712 5.0.2 Sony arm64-v8a
Sony Xperia Z5 E6653 5.1.1 Sony arm64-v8a

Mlais M7 M7 5.0 Alps arm64-v8a
Amazon Fire Phone SD4930UR 4.2.2 Amazon armeabi-v7a
Amazon Kindle Fire C9R6QM 4.4.3 Amazon armeabi-v7a

HTC 10 HTCM10h 6.0.1 HTC arm64-v8a
Ulefone Be Touch 2 Be Touch 2 5.1 Ulefone arm64-v8a

ASUS Nexus 7 ME370T 4.2.1 ASUS armeabi-v7a
Blackberry Priv STV100-1 5.1.1 Blackberry arm64-v8a
Google Pixel Pixel 7.1.2 Google arm64-v8a

HTC Desire 526G+ D526H 4.4.2 HTC armeabi-v7a
HTC One A9 HTCOne A9 6.0.1 HTC arm64-v8a

Huawei Ascend Mate 7 MT7-L09 4.4.2 Huawei armeabi-v7a
Huawei Honor 6 H60-L02 4.4.2 Huawei armeabi-v7a
Huawei Nexus 6P H1511 7.1.2 Huawei arm64-v8a

Huawei P9 EVA-L09 6.0 Huawei arm64-v8a
Intex Aqua Y2 Pro Aqua Y2 Pro 4.4.2 Intex armeabi-v7a

Lava Iris X8 IRIS X8 4.4.2 Iris armeabi-v7a

Table 2. Subset list of deployment tested Android devices (minor variation of device
models are skipped in the list). Correctness of the Unaligned-access based detection
library was confirmed with total 174 devices and several emulators. The code detected
execution environment within 1ms with 100% accuracy.
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5.2 Virtualization Detection: New Strategies and Their
Effectiveness

[12] suggested the Counter-Based Timing mechanism to distinguish QEMU. This
method demonstrated that QEMU shows abnormally faster timing performance
of the CPUID instruction compared to nop. Their experiment showed that the
timing performance of the CPUID instruction is approximately 10 times slower
than nop in the QEMU environment; however, the ratio of CPUID to nop reached
200 from a native environment. This detection technique can be rather trivially
mitigated by slowing down the execution speed of the CPUID instruction by using
QEMU thus inappropriate for commercially used software.

5.3 Attacks on More Virtual Machine Emulators

Symantec [5] published a paper [11] that broadly covers the execution environ-
ment of fingerprinting techniques. The paper surveys several virtual machines
including VMWare [7], Xen [4], Parallels [3], VirtualBox [9], Bochs [10], and
QEMU [2]. This paper mainly focused on the behavioral difference caused by
implementation bugs in specific instructions. Their work indicates that there
are many discrepancies in virtualized and emulated environments running on
real hardware. However, emulator detection based on such discrepancies are less
accurate to be used for commercial products.

6 Conclusion

So far, emulator detection techniques were considered a malware writing tech-
nique for evading dynamic analysis. However, in this paper, we point out that
such technology is also required for legitimate software and discussed fast and
accurate system emulator detection techniques from the application vendor’s
viewpoint. In particular, we mainly discussed three detection techniques lever-
aging architectural internals of hardware and emulator design (context switch,
translation cache, and unaligned vectorization). The discussed techniques out-
performed previously known methods regarding speed, accuracy, and reliability.
Based on our evaluation, we conclude that unaligned vectorization based detec-
tion is a promising technique suited for protecting commercial software from
the unwanted analysis. To verify the practicality and deployability of our tech-
nique, we tested our code against 174 various models of mobile devices and
several emulators. The evaluation result suggests that unaligned vectorization
based emulator detection technique guarantees correct detection result within
1ms. The technique is currently being developed with real-world corporate for
large-scale commercial deployment.
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Abstract. Rowhammer attacks intentionally induce bit flips to corrupt
victim’s data whose integrity must be guaranteed. To perform sophisti-
cated rowhammer attacks, attackers need to repeatedly access the neigh-
boring rows of target data. In DRAM, however, the physical addresses
of neighboring rows are not always contiguous even if they are located
before or after a target row. Hence, it is important to know the map-
ping algorithm which maps between physical addresses and physical row
indexes not only for an attack but also for protection.

In this paper, we introduce a method to reverse engineer the exact
mapping algorithm and demonstrate that the assumption in previous
rowhammer work is faulty. In addition, we introduce a novel and effi-
cient rowhammer method and improve existing mitigations that has a
security hole caused by the faulty assumption. Finally, we evaluate the
effectiveness of the proposed attack and show that the proposed mitiga-
tion almost perfectly defends against rowhammer attacks.

Keywords: Rowhammer bug · Reverse engineer ·Memory address map-
ping.

1 Introduction

In the last decades, DRAM has evolved dramatically. Researchers and manufac-
turers have devoted many efforts to increase the capacity of DRAM memory. As
a consequence, the recent DRAM achieves high cell density, and thus, can hold
large amounts of data. Despite the benefit, the development also brought side
effects such as hardware faults which threaten data integrity.

A rowhammer attack is a representative attack abusing a disturbance error
which is one of the high-density DRAM hardware faults. This attack corrupts
target data by maximizing the effects of disturbance errors. In specific, the at-
tacks repeatedly access the neighboring rows of the target row that contains the
target data. Although rowhammer attacks exploit a hardware fault, the attacks
are performed at the software level without direct access to the hardware.

2 S. Oh et al.

One of the requirements for rowhammer attacks is that attackers need to
access the neighboring rows of the target row in the same bank. However, the
mapping information between the user-level locations (e.g., virtual addresses
or physical addresses) and physical locations on DRAM (e.g., row and bank
information) is not available publicly. Therefore, it is not straightforward to
access the upper and lower neighboring rows in the same bank.

To find the mapping, previous work has reverse engineered the mapping al-
gorithm between physical addresses and physical DRAM bank indexes [10, 14].
Using the mapping algorithm for banks, it is possible to track down bank indexes
with physical addresses. However, no method has been proposed to find the exact
mapping algorithm for rows, although a part of the mapping algorithm is already
revealed [4]. To defend against the rowhammer attacks, a mitigation also has to
understand the mapping algorithm since it has to locate the exact neighboring
rows. However, due to the difficulty of knowing row-mapping information, previ-
ous work has used a näıve assumption that DRAM rows are arranged identically
to the sequence of physical addresses [1, 3]. If the assumption is faulty, these
mitigations will not work as the intended way.

In this paper, we introduce a method to reverse engineer the mapping al-
gorithm for rows. This method exploits the insight that rowhammer induces
bit flips only on the neighboring rows. Based on this method, we demonstrate
the invalidity of the commonly presumed assumption that physically contiguous
rows have also contiguous physical addresses, and propose a novel and precise
mapping algorithm-aware rowhammer attack. Also, we show that this invalid
assumption causes a security hole in existing mitigation methods, and improve
the existing mitigation by using our method to reverse engineer the mapping
algorithm. Finally, we evaluate our attack and mitigation methods.

The contributions of our research are as follows:

• We introduce a method to reverse engineer the DRAM row organization and
discover the mapping algorithm for rows. To the best of our knowledge, no
such method has been used by the previous work to reverse engineer the
organization of DRAM modules.

• We propose a novel and precise rowhammer attack with exact mapping al-
gorithm.

• We explain a security hole of existing mitigations and improve one of the
mitigations using our exact mapping algorithm.

2 Background

In this section, we introduce DRAM organization and a rowhammer bug. In
addition, we explain the prior work to reverse engineer the DRAM mapping
algorithm.

2.1 DRAM Organization

DRAMs are hierarchically organized (Fig. 1a). Channels connect a memory con-
troller to Dual Inline Memory Modules (DIMMs). Modern DIMMs can have
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rowhammer) exquisitely, it is necessary to know the user-level address (i.e., vir-
tual address) of upper and lower neighboring rows in the same bank. Previous
work [11, 13] has introduced the methods to know the virtual addresses that
correspond to the physical addresses of potential neighboring rows. However,
since these methods are performed with the unproven assumption that con-
tiguous rows have contiguous physical addresses, the potential neighboring rows
may not be actual neighboring rows. Therefore, to precisely corrupt the target
row, attackers need to know the exact physical addresses corresponding to the
neighboring rows in the same bank.

2.3 Mapping Algorithm

To access data on DRAM module, the memory controller locates the data on
DRAM by referring to mapping algorithm. The mapping algorithm determines
the location of data on DRAM and is composed of several physical address bits.
Since it must map the physical address to the hierarchies of DRAM, the algo-
rithm consists of sub-mapping algorithms for channels, modules, ranks, banks,
and rows.

The mapping algorithm for banks is reverse engineered in previous work [10,
14]. By using a timing method which is related to row buffers, this work reveals
that the mapping algorithm for banks is composed of XORed combinations of
certain physical address bits. In contrast, the mapping algorithm for rows cannot
be reverse engineered with the method which is used in the work. While it is
possible to find which physical address bits compose the mapping algorithm for
rows, it is impossible to identify how the composed bits of physical address deter-
mine the physical location of rows. This means that it is possible to distinguish
whether the row of a certain physical address is different from the rowhammer
target row in the same bank, but it is impossible to identify the exact upper and
lower rows of the target row.

3 Reverse Engineering Mapping Algorithm

While the mapping algorithm for banks is reverse engineered, the mapping algo-
rithm for rows cannot be reverse engineered using the timing method. Therefore,
previous work [1, 3, 14] has näıve assumption that physical rows are arranged
identically to physical addresses. According to the prior assumption, two rows
are physically contiguous if the physical addresses of these rows are contiguous
in the same bank.

Let r represent a row address composed of {b0, b1, . . . , bn}, bi be the ith row
bit, where n is the number of bits on a logical row address. The row index
function on prior assumption is:

LRow(r) =

n∑
i=0

2ibi, (1)
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at most eight ranks which denote sets of DRAM chips. Each rank has multi-
ple banks and banks contain numerous cells that store the voltage representing
logical data. All cells are connected horizontally and vertically through word-
lines and bitlines. The horizontally and vertically connected cells are respectively
called rows and columns (Fig. 1b).

The 2D array of cells is subdivided into several subarrays [7]. Each subarray
is composed of 512 rows and has regularity, which indicates that the subarray
internal organizations are same as each other. All the cells in one subarray are
connected to one local row buffer, and all local row buffers are connected to
one global row buffer (Fig. 1b). All row buffers store and amplify the voltage of
DRAM data to a recognizable level.

The data on the DRAM cells are volatile because the voltage representing the
data is leaked over time, leading to data loss. Therefore, the voltage is maintained
by refreshing cells periodically before the voltage drops below the threshold (the
indicator to determine whether the data is 0 or 1).

2.2 Rowhammer

Since DRAM chips have been compressed remarkably to increase the capac-
ity within limited space, many hardware faults have emerged [2, 5, 6]. One of
the hardware faults is a disturbance error which hazards data integrity due to
interferences of adjacent cells.

Rowhammer is a method to intentionally induce the disturbance error. Rowham-
mer is performed by repeatedly and rapidly accessing a DRAM row (called an
aggressor row). This process accelerates the effect of the disturbance error, that
corrupts the neighboring rows (called target rows or victim rows) of the aggressor
row.

Double-sided rowhammer, an effective method to induce bit flips, was in-
troduced in [12]. Double-sided rowhammer repeatedly accesses both upper and
lower neighboring rows of a target row, while the single-sided rowhammer re-
peatedly accesses only a single neighboring row to induce bit flips on the target
row. To corrupt target data by using double-sided rowhammer (or single-sided
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rowhammer) exquisitely, it is necessary to know the user-level address (i.e., vir-
tual address) of upper and lower neighboring rows in the same bank. Previous
work [11, 13] has introduced the methods to know the virtual addresses that
correspond to the physical addresses of potential neighboring rows. However,
since these methods are performed with the unproven assumption that con-
tiguous rows have contiguous physical addresses, the potential neighboring rows
may not be actual neighboring rows. Therefore, to precisely corrupt the target
row, attackers need to know the exact physical addresses corresponding to the
neighboring rows in the same bank.

2.3 Mapping Algorithm

To access data on DRAM module, the memory controller locates the data on
DRAM by referring to mapping algorithm. The mapping algorithm determines
the location of data on DRAM and is composed of several physical address bits.
Since it must map the physical address to the hierarchies of DRAM, the algo-
rithm consists of sub-mapping algorithms for channels, modules, ranks, banks,
and rows.

The mapping algorithm for banks is reverse engineered in previous work [10,
14]. By using a timing method which is related to row buffers, this work reveals
that the mapping algorithm for banks is composed of XORed combinations of
certain physical address bits. In contrast, the mapping algorithm for rows cannot
be reverse engineered with the method which is used in the work. While it is
possible to find which physical address bits compose the mapping algorithm for
rows, it is impossible to identify how the composed bits of physical address deter-
mine the physical location of rows. This means that it is possible to distinguish
whether the row of a certain physical address is different from the rowhammer
target row in the same bank, but it is impossible to identify the exact upper and
lower rows of the target row.

3 Reverse Engineering Mapping Algorithm

While the mapping algorithm for banks is reverse engineered, the mapping algo-
rithm for rows cannot be reverse engineered using the timing method. Therefore,
previous work [1, 3, 14] has näıve assumption that physical rows are arranged
identically to physical addresses. According to the prior assumption, two rows
are physically contiguous if the physical addresses of these rows are contiguous
in the same bank.

Let r represent a row address composed of {b0, b1, . . . , bn}, bi be the ith row
bit, where n is the number of bits on a logical row address. The row index
function on prior assumption is:

LRow(r) =

n∑
i=0

2ibi, (1)

The 19th World Conference on Information Security Applications

-163-



6 S. Oh et al.

• rn is a row address which is composed of {b0, b1, b2, ..., bi}, where i is the
number of bits on row address rn.

• srn,m is a row that is sandwiched between rows rn and rm.
• Dhammer(rn, rm) returns the set of the rows that have been corrupted by

double-sided rowhammer when rn and rm are aggressor rows.
• Shammer(r) returns the set of the rows that have been corrupted by single-
sided rowhammer when r is an aggressor row.

We perform double-sided rowhammer with all the combinations of two rows
within a single DRAM subarray to find a row that is sandwiched between two
rows. A single DRAM subarray consists of 512 rows, so the number of cases is
at most

(
512
2

)
= 130,816. Thus, we argue that the time required to perform the

rowhammer with two selected rows is feasible. We check which rows have been
corrupted by double-sided rowhammer on the selected rows rn and rm. By this
process, we can find the set of Dhammer(rn, rm), which is related to srn,m.
However, the set of Dhammer(rn, rm) may contain rows that are adjacent to
the other sides of the aggressor rows in addition to the sandwiched rows due to
the effects of single-sided rowhammer. Therefore, we remove the effect of single-
sided rowhammer by excluding the sets of Shammer(rn) and Shammer(rm)
from Dhammer(rn, rm) by performing additional single-sided rowhammer on
rm and rn.

Ideally, Dhammer(rn, rm)−Shammer(rn)−Shammer(rm) must have only
one row srn,m because only one sandwiched row can be between two aggressor
rows. Therefore, except for two boundary rows (the 0th row and the 512th row)
which are not affected by double-sided rowhammer, 510 tuples (rn, srn,m, rm)
can be obtained within a single DRAM subarray. This tuple indicates a sequence
of physically contiguous rows. After obtaining the tuple, we can infer overall row
arrangements due to the subarray regularity.

With the tuples, we can reconstruct a subarray by using the following rules:

• If two tuples, (rn1
, srn1,m1

, rm1
) and (rn2

, srn2,m2
, rm2

) exist such that srn1,m1
=

rn2 and rm1 = srn2,m2 , then the two tuples can be merged into (rn1 , rn2 , rm1 , rm2).
• If two tuples, (rn3 , srn3,m3 , rm3) and (rn4 , srn4,m4 , rm4) exist such that rm3 =

rn4 , then the two tuples can be merged into (rn3 , srn3,m3 , rm3 , srn4,m4 , rm4).

Using this method, we can ideally merge all of the tuples into one sequentially
ordered tuple, that is, the physical sequence of 512 rows within a single DRAM
subarray.

The success of row serialization depends on the number of corrupted rows
after performing double-sided rowhammer. However, some rows might not be
corrupted. To resolve this problem, we focus on the subarray regularity, which
means that every subarray is organized identically. Due to this regularity, undis-
covered tuples in one subarray can be obtained from another subarray.

3.2 Finding Mapping Algorithm

Next, we use the serialized rows to find the mapping algorithm of physical row
indexes PRow(rn) (or Fi(r)). As we mentioned, the input of this function (2) is
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where r is a row address. These bits of a row address can be extracted from a
physical address by using the previous methods [10,14]. We call this function (1)
a logical row index function in this paper. Previous work has not demonstrated
that the logical row index function is used in the real architecture.

The goal of this section is to find the real mapping algorithm. We can express
the mapping algorithm as:

PRow(r) =

n∑
i=0

2iFi(r) (2)

We call this function (2) a physical row index function in this paper and the goal
of this section is to find the Fi(r) that is assumed to consist of physical address
bits.

Before explaining our method in detail, we assume that 512 contiguous logical
rows constitute one physical subarray and the mapping algorithm of one DRAM
subarray also works for all DRAM subarrays. These assumptions seem reasonable
due to the regularity of DRAM subarrays [5]. Therefore, we only focus on the
lower 9 bits of a row address because each DRAM subarray consists of 512 (= 29)
rows.

Serialize Phase
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r511r512

Local Row Buffer
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…
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Fig. 2: Overall procedure of reverse engineering.

We reverse engineer the mapping algorithm in two steps. First, we arrange
DRAM rows in sequential order by using rowhammer. We refer to this step
as row serialization. Second, we manually find the mapping algorithm with the
serialized rows, that is finding the function Fi(r). The overall procedure of reverse
engineering is shown in Fig. 2.

3.1 Row Serialization

In this subsection, we describe how to serialize rows of the single subarray in
physical order to find the exact mapping algorithm. The key idea of row seri-
alization is that rowhammer induces bit flips only on the neighboring rows of
an aggressor row. We can identify the neighboring rows of aggressor rows by
detecting the rows that have been corrupted by the rowhammer.

For convenience, we first define the following primitives:
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• rn is a row address which is composed of {b0, b1, b2, ..., bi}, where i is the
number of bits on row address rn.

• srn,m is a row that is sandwiched between rows rn and rm.
• Dhammer(rn, rm) returns the set of the rows that have been corrupted by

double-sided rowhammer when rn and rm are aggressor rows.
• Shammer(r) returns the set of the rows that have been corrupted by single-
sided rowhammer when r is an aggressor row.

We perform double-sided rowhammer with all the combinations of two rows
within a single DRAM subarray to find a row that is sandwiched between two
rows. A single DRAM subarray consists of 512 rows, so the number of cases is
at most

(
512
2

)
= 130,816. Thus, we argue that the time required to perform the

rowhammer with two selected rows is feasible. We check which rows have been
corrupted by double-sided rowhammer on the selected rows rn and rm. By this
process, we can find the set of Dhammer(rn, rm), which is related to srn,m.
However, the set of Dhammer(rn, rm) may contain rows that are adjacent to
the other sides of the aggressor rows in addition to the sandwiched rows due to
the effects of single-sided rowhammer. Therefore, we remove the effect of single-
sided rowhammer by excluding the sets of Shammer(rn) and Shammer(rm)
from Dhammer(rn, rm) by performing additional single-sided rowhammer on
rm and rn.

Ideally, Dhammer(rn, rm)−Shammer(rn)−Shammer(rm) must have only
one row srn,m because only one sandwiched row can be between two aggressor
rows. Therefore, except for two boundary rows (the 0th row and the 512th row)
which are not affected by double-sided rowhammer, 510 tuples (rn, srn,m, rm)
can be obtained within a single DRAM subarray. This tuple indicates a sequence
of physically contiguous rows. After obtaining the tuple, we can infer overall row
arrangements due to the subarray regularity.

With the tuples, we can reconstruct a subarray by using the following rules:

• If two tuples, (rn1
, srn1,m1

, rm1
) and (rn2

, srn2,m2
, rm2

) exist such that srn1,m1
=

rn2 and rm1 = srn2,m2 , then the two tuples can be merged into (rn1 , rn2 , rm1 , rm2).
• If two tuples, (rn3 , srn3,m3 , rm3) and (rn4 , srn4,m4 , rm4) exist such that rm3 =

rn4 , then the two tuples can be merged into (rn3 , srn3,m3 , rm3 , srn4,m4 , rm4).

Using this method, we can ideally merge all of the tuples into one sequentially
ordered tuple, that is, the physical sequence of 512 rows within a single DRAM
subarray.

The success of row serialization depends on the number of corrupted rows
after performing double-sided rowhammer. However, some rows might not be
corrupted. To resolve this problem, we focus on the subarray regularity, which
means that every subarray is organized identically. Due to this regularity, undis-
covered tuples in one subarray can be obtained from another subarray.

3.2 Finding Mapping Algorithm

Next, we use the serialized rows to find the mapping algorithm of physical row
indexes PRow(rn) (or Fi(r)). As we mentioned, the input of this function (2) is
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mechanism of DRAM chip unlike address mirroring which is a mechanism at
a circuit level. We also infer that row twisting is somehow related to twisted
wordline schemes [8, 9].

Table 1: Address mirroring and row twisting on DDR3 modules of three major
manufacturers.
Tag Manufacturer Model # of ranks Mirroring Twisting

A
SAMSUNG

M378B5273DH0-CK0 2

B M378B5273DH0-CH9 2

C M378B5173QH0-CK0 1

D
HYNIX

HMT351U6CFR8C-PB 2

E HMT351U6CFR8C-H9 2

F MICRON MT16JTF51264AZ-1G6M1∗ 2
∗In this case, there are not enough bit flips to reverse engineer the mapping

algorithm. However, since some bit flips are induced in rowhammer experiments
with only address mirroring, we infer that this module is affected only by address
mirroring.

4 Mapping Algorithm-Aware Rowhammer

If attackers know the exact mapping algorithm for rows, the attackers can per-
form more effective rowhammer attack by inducing more exploitable bit flips.
In addition, attackers can exquisitely perform rowhammer attacks because the
attackers can locate the exact upper/lower neighboring rows of the target row.
We refer to this method as mapping algorithm-aware rowhammer.

1st
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0th3rd 2nd4th5th6th7th8th9th

Rowa

… 0 0 0 0 0 0 0 1 1 1Rowb

… 0 0 0 0 0 0 1 0 0 1Rowc
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…

…

Row Buffer
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Fig. 3: Vulnerable rows on address mirroring. The upper row in logical index (b)
and the upper row in physical index (c) is different about Rowa.

We give an example of rows that are vulnerable to rowhammer attacks
(Fig. 3). For simplicity, we assume that the DRAM module is affected by only
address mirroring. When the faulty assumption is applied, the upper row is Rowb

and the lower row is Rowc with respect to Rowa (Fig. 3b). However, the upper
row of Rowa in address mirroring is actually Rowd, not Rowb (Fig. 3c). The
logical row indexes of Rowa, Rowb, Rowc and Rowd are 8, 7, 9 and 23, but their
physical row indexes are 16, 7, 17 and 15, respectively.
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a row address and the output is a physical row index. We manually find the func-
tion PRow(r) by exploiting the insight that the discovered tuple (rn, srn,m, rm)
implies PRow(rn) + 1 = PRow(srn,m) and PRow(rm) − 1 = PRow(srn,m),
which means that the rows of the tuple are sequentially contiguous.

3.3 Row Address Mapping Schemes

We tested six DDR3 modules of three major DRAM manufacturers with this
method to reverse engineer the mapping algorithm (Table 1). By using this
method, we discovered two mapping algorithm schemes, which are address mir-
roring and row twisting. As a result, we demonstrate that the prior assumption
is faulty.

Address Mirroring. The first scheme is observed only on one rank1 of two-
rank DRAM modules for all of the experimented manufacturers. The other rank
is subject to either the logical row index function or row twisting. The physical
row index function is (we mark the components which are different from the
logical row index function in bold.):

i 0 1 2 3 4 5 6 7 8

Fi(r) b0 b1 b2 b4 b3 b6 b5 b8 b7

JEDEC [4] documents this scheme, called address mirroring that is deployed
to increase throughput by cross-wiring some wires on one rank. We can identify
that our discovered physical row index is address mirroring because the index
of address mirroring in the JEDEC standard is exactly identical with ours. The
sameness implies that our method to reverse engineer is valid to find the exact
physical address.

Row Twisting. The second scheme is observed only on DRAMs from A manu-
facturer, and we call the scheme row twisting. The physical row index function is
(we mark the components which are different from the logical row index function
in bold.):

i 0 1 2 3 4 5 6 7 8

Fi(r) b0 b1 ⊕ b3 b2 ⊕ b3 b3 b4 b5 b6 b7 b8

According to our experimental result, the row twisting function is applied
after address mirroring. For example, when a module is affected by both row
twisting and address mirroring, the bit swap of b3 and b4 is first performed (due
to address mirroring) and the swapped b3 (originally b4) is XORed with b2 and b1
later (due to row twisting). Therefore, we infer that row twisting is an internal

1In fact, it is impossible to distinguish the rank bits and bank bits from the existing
reverse engineering method. However, since we can track the difference of mapping
algorithm for each rank, we can infer which bit of the bank bits is a rank bit.
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mechanism of DRAM chip unlike address mirroring which is a mechanism at
a circuit level. We also infer that row twisting is somehow related to twisted
wordline schemes [8, 9].

Table 1: Address mirroring and row twisting on DDR3 modules of three major
manufacturers.
Tag Manufacturer Model # of ranks Mirroring Twisting

A
SAMSUNG

M378B5273DH0-CK0 2

B M378B5273DH0-CH9 2

C M378B5173QH0-CK0 1

D
HYNIX

HMT351U6CFR8C-PB 2

E HMT351U6CFR8C-H9 2

F MICRON MT16JTF51264AZ-1G6M1∗ 2
∗In this case, there are not enough bit flips to reverse engineer the mapping

algorithm. However, since some bit flips are induced in rowhammer experiments
with only address mirroring, we infer that this module is affected only by address
mirroring.

4 Mapping Algorithm-Aware Rowhammer

If attackers know the exact mapping algorithm for rows, the attackers can per-
form more effective rowhammer attack by inducing more exploitable bit flips.
In addition, attackers can exquisitely perform rowhammer attacks because the
attackers can locate the exact upper/lower neighboring rows of the target row.
We refer to this method as mapping algorithm-aware rowhammer.
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Fig. 3: Vulnerable rows on address mirroring. The upper row in logical index (b)
and the upper row in physical index (c) is different about Rowa.

We give an example of rows that are vulnerable to rowhammer attacks
(Fig. 3). For simplicity, we assume that the DRAM module is affected by only
address mirroring. When the faulty assumption is applied, the upper row is Rowb

and the lower row is Rowc with respect to Rowa (Fig. 3b). However, the upper
row of Rowa in address mirroring is actually Rowd, not Rowb (Fig. 3c). The
logical row indexes of Rowa, Rowb, Rowc and Rowd are 8, 7, 9 and 23, but their
physical row indexes are 16, 7, 17 and 15, respectively.
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5 Improved Mitigation

In this section, we explain existing mitigations and how the mitigations can be
attacked by rowhammer attacks. Then, we improve Anvil, one of the existing
mitigation methods, and evaluate its effectiveness as a proof-of-concept.

5.1 Existing Mitigations and a Security Hole

We study two representative mitigations, Anvil [1] and G-CATT [3], and explain
how they are affected negatively by the faulty assumption using the aforemen-
tioned example of the vulnerable row (Fig. 3).

Anvil. Anvil defends rowhammer attacks by refreshing potential victim rows
when the signs of rowhammer attacks are detected. The potential victim rows
are the neighboring rows of the detected aggressor rows and thus Anvil refreshes
the presumed neighboring rows.

However, according to the faulty assumption of Anvil, Anvil regards Rowb

and Rowc as potential victim rows when Rowa is the aggressor row (Fig. 3b).
Therefore, if attackers repeatedly access the aggressor row Rowa, bit flips may
occur on Rowd, which was not refreshed by Anvil. As a result, Anvil can detect
rowhammer attacks but cannot refresh all the victim rows.

G-CATT. G-CATT defends rowhammer attacks by putting a row between rows
of different security domains (e.g., kernel and user) to physically separate the
rows. Since rowhammer attacks only corrupt rows that are adjacent to aggressor
rows, attackers cannot corrupt victim memory on G-CATT.

However, according to the faulty assumption of G-CATT, G-CATT expects
that Rowa and Rowd are already separated (Fig. 3b). Therefore, if an attacker
process is allocated in Rowd, Rowa is vulnerable to rowhammer attacks.

5.2 Method to Improve Existing Mitigations

To perfectly defend against rowhammer attacks, the existing mitigations must
be improved with the proper physical row indexes. There are two methods to
improve the existing mitigations with our discovered mapping algorithm.

The first method regards all possible neighboring rows of each and every
case of the mapping algorithm schemes as the actual neighboring rows. This
method takes additional runtime overhead to manage additional rows but our
method to find the mapping algorithm is not required. The second method finds
the mapping algorithm by using our proposed method before performing the
existing mitigations. This method is only possible when the victim’s DRAM
modules are vulnerable enough to be able to be reverse engineered and initial
time to find the mapping algorithm. However, this method does not need an
additional runtime overhead compared to the first method.

Reliable Rowhammer Attack and Mitigation 9

We evaluate the effectiveness of mapping algorithm-aware rowhammer. To
evaluate the effectiveness, we measured the number of bit flips that were caused
by double-sided rowhammer. We exploited three kinds of double-sided rowham-
mer:

(i) R1 is performed with the assumption that physically contiguous rows have
contiguous physical addresses.

(ii) R2 is performed with the assumption that row indexes are affected only by
address mirroring.

(iii) R3 is performed with the assumption that row indexes are affected by both
address mirroring and row twisting.

We performed these three types of rowhammer on the memory space that is
different from the subarray used in the experiment of Table 1. We tested on two
modules: one was inferred to be affected only by address mirroring (module D);
the other was inferred to be affected by both address mirroring and row twisting
(module A) by our proposed method. We measured the number of bit flips on
two processors, Sandy Bridge (i7-2600) and Haswell (i5-4460).

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

module A module D module A module D

Sandy Brdige Haswell

N
or

m
al

iz
ed

 #
 o

f b
it 

fli
ps

R1

R2

R3

Fig. 4: Normalized number of bit flips. The number of bit flips for each case is
normalized to R1.

Although the prior assumption is faulty, R1 showed considerable bit flips
(Fig. 4). The abnormal result is because some physical rows are sequential like
logical rows, or single-sided rowhammer has shown an effect even if the attack
uses double-sided rowhammer. However, module A shows the largest number of
bit flips by R3 (25% more bit flips than R1 on average), and module D shows the
largest number of bit flips by R2 (12% more bit flips than R1 on average). This
experimental result shows that the proposed attack method, mapping algorithm-
aware rowhammer, is more efficient than the conventional method regardless of
processor types.

Also, this experimental result validates that our discovered mapping algo-
rithm is correct.
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5 Improved Mitigation

In this section, we explain existing mitigations and how the mitigations can be
attacked by rowhammer attacks. Then, we improve Anvil, one of the existing
mitigation methods, and evaluate its effectiveness as a proof-of-concept.

5.1 Existing Mitigations and a Security Hole

We study two representative mitigations, Anvil [1] and G-CATT [3], and explain
how they are affected negatively by the faulty assumption using the aforemen-
tioned example of the vulnerable row (Fig. 3).

Anvil. Anvil defends rowhammer attacks by refreshing potential victim rows
when the signs of rowhammer attacks are detected. The potential victim rows
are the neighboring rows of the detected aggressor rows and thus Anvil refreshes
the presumed neighboring rows.

However, according to the faulty assumption of Anvil, Anvil regards Rowb

and Rowc as potential victim rows when Rowa is the aggressor row (Fig. 3b).
Therefore, if attackers repeatedly access the aggressor row Rowa, bit flips may
occur on Rowd, which was not refreshed by Anvil. As a result, Anvil can detect
rowhammer attacks but cannot refresh all the victim rows.

G-CATT. G-CATT defends rowhammer attacks by putting a row between rows
of different security domains (e.g., kernel and user) to physically separate the
rows. Since rowhammer attacks only corrupt rows that are adjacent to aggressor
rows, attackers cannot corrupt victim memory on G-CATT.

However, according to the faulty assumption of G-CATT, G-CATT expects
that Rowa and Rowd are already separated (Fig. 3b). Therefore, if an attacker
process is allocated in Rowd, Rowa is vulnerable to rowhammer attacks.

5.2 Method to Improve Existing Mitigations

To perfectly defend against rowhammer attacks, the existing mitigations must
be improved with the proper physical row indexes. There are two methods to
improve the existing mitigations with our discovered mapping algorithm.

The first method regards all possible neighboring rows of each and every
case of the mapping algorithm schemes as the actual neighboring rows. This
method takes additional runtime overhead to manage additional rows but our
method to find the mapping algorithm is not required. The second method finds
the mapping algorithm by using our proposed method before performing the
existing mitigations. This method is only possible when the victim’s DRAM
modules are vulnerable enough to be able to be reverse engineered and initial
time to find the mapping algorithm. However, this method does not need an
additional runtime overhead compared to the first method.
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Fig. 5: Normalized number of bit flips with module A on Sandy Bridge.

5.3 Evaluation

We measured the bit flips by rowhammer on module A to evaluate the effec-
tiveness of the improved mitigation that considers the exact mapping algorithm
schemes. First, to show the security hole of existing mitigations, we performed
single-sided rowhammer on Anvil with only the mapping algorithm for banks.
Next, we improved Anvil into two cases: one is improved by considering only
address mirroring, and the other is improved by considering both address mir-
roring and row twisting. We perform single-sided rowhammer again on those two
improved Anvil methods (Fig. 5).

Anvil and Anvil with only mirroring might refresh actual victim rows because
some refreshed rows are actual victim rows in spite of the faulty information
about the neighboring rows. However, not all potential victim rows are actual
victim rows, and thus Anvil and Anvil with only mirroring cannot refresh all
of the actual victim rows. Fully improved Anvil, which is modified by using our
mapping algorithm, shows no bit flips. This result shows that the fully improved
mitigation can effectively defend against rowhammer attacks. In addition, we
believe that G-CATT also properly prevents rowhammer attacks if the exact
mapping algorithm is applied to G-CATT.

6 Conclusion

We introduced a method to reverse engineer the mapping algorithm for rows
and revealed an exact mapping algorithm for rows. This method uses the fea-
ture that rowhammer induces bit flips only on the neighboring rows of aggressor
rows. Using this method, we can infer the exact row arrangement. As a result,
we demonstrate that previous work has faulty assumption that physically con-
tiguous rows have also contiguous physical addresses.

Based on the exact physical row index, we can induce bit flips more efficiently
than the conventional rowhammer method which does not consider the exact
physical row index. Note that more bit flips make the rowhammer attack more
successful because there are more candidates of exploitable bit flips. Also, we
have shown that it is possible to make bit flips in the system with rowhammer
mitigation methods if they were used with the faulty assumption. Finally, we
have improved the existing mitigation and showed that the improved mitigation
perfectly protects against rowhammer attacks.
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Abstract. Information leakage by insider results in financial losses and ethical 
issues, thus affects business sustainability as well as corporate reputation. In Ko-
rea, information leakage by insiders occupies about 80% of the security incidents. 
Most companies are establishing preventive and prohibited security policies. 
Nevertheless, security incidents are unceasing. Such restrictive security policies 
inhibit work efficiency or make employees recognize security negatively. Due to 
these problems, the rapid detection capability of leakage signs is required. To 
detect the signs of information leakage, security monitoring is an essential activ-
ity. This study is an exploratory case study that analyzed the current state of se-
curity monitoring operated by three companies in Korea and provides some risk 
scenarios about information leakage. For the case analysis, this study collected 
each company’s security policy, systems linked with security monitoring system, 
and system log used. As a result, this study identified vulnerabilities that were 
difficult to be detected with the current security monitoring system, and drew 4 
risk scenarios that were likely to occur in the future. The results of this study will 
be useful for the companies that are planning to establish effective security mon-
itoring system. 

Keywords: Insider Threat, Information Leakage, Security Monitoring 

1 Introductions 

With the development of information technology and the improvement of personal 
capacity in computing ability, the business efficiency using information technology is 
improving, whereas the security incident like information leakage is increasing. Ac-
cording to statistics, information leakage affects both the companies and customers, and 
in case of companies, customer confidence declines and market share reduces and in 
case of customers, secondary damage is expected by personal information leakage [1]. 
This means that information leakage is highly relevant to the sustainability of the com-
pany. One interesting fact is that there is a difference in the subject who involves in 
information leakage between Korea and foreign countries. In case of foreign countries, 
information leakage by hackers occurs three times more than information leakage by 
insider, on the other hand, in case of Korea, about 80% of the subjects who leaked 

2 

information appear as insider [2]. As can be seen in the result of study, the current 
security system in Korean companies has limitations in preventing insiders from leak-
ing information although it is appropriate for defending external threats. 

Currently in Korea, most companies are establishing and operating various security 
systems to prevent security incidents. However, despite such efforts, it is impossible to 
prevent security incidents perfectly as can be seen in the cases of the past. In other 
words, Korea has a high level of dependence on prevention-centered security measures 
including access control, document encryption by DRM (Digital Right Management), 
storage device control and email control. Nevertheless, security incident like infor-
mation leakage inevitably occurs. Also, prevention-centered security measures involve 
various problems including hindrance to business efficiency and increase in negative 
awareness of security [3]. Of course, preventing security incident like information leak-
age is important, but it is necessary to improve the ability to detect and respond to the 
signs of leakage as quickly as possible. 

However, it is not easy to detect the information leakage by insider quickly at all. 
The amount of event (access log, usage log, etc.) that is occurred by employees are vast 
and false positive also occurs often [4]. Also, the focus was on detecting unusual be-
havior in the past, but analyzing the misuse cases of employees who have an authority 
and look normal is a difficult task particularly in Korea [5]. Therefore, to monitor the 
signs of information leakage by insider effectively, it is necessary to analyze the current 
state of monitoring by companies and draw the improvement direction. This study is a 
case study on security monitoring to detect the signs of information leakage, among 
insider threats as quickly as possible. For the case study, this study collected the infor-
mation related to security monitoring system being operated by companies in fields of 
finance, manufacturing, and information communication technology in Korea where 
information leakage incident occurs relatively frequently. And this study draws some 
limitations and suggestions by analyzing to which system the security monitoring sys-
tem is linked and which logs are collected and utilized. 

2 Theoretical Background 

2.1 Insider Threat and Information Leakage 

This section describes the definition and types of insider threat and looks at why 
insider threat is important and especially through which routes the information is 
leaked. There are various definitions on insider and in general, insider is defined as a 
person who can access IT system legitimately [6]. Therefore, an insider can be defined 
as a person who has the legal right to access the information assets of an organization 
logically or physically and thus may have a negative influence on confidentiality, in-
tegrity, and availability of information assets. In addition, the term can be distinguished 
from external attacker like hacker, by the term ‘legitimately’. 

As can be seen in the definition above, insider means a person who knows the inter-
nal affairs of an organization. Therefore, an insider is more threatening than an outsider, 
as an insider knows the value of confidential information held by an organization, how 
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information appear as insider [2]. As can be seen in the result of study, the current 
security system in Korean companies has limitations in preventing insiders from leak-
ing information although it is appropriate for defending external threats. 

Currently in Korea, most companies are establishing and operating various security 
systems to prevent security incidents. However, despite such efforts, it is impossible to 
prevent security incidents perfectly as can be seen in the cases of the past. In other 
words, Korea has a high level of dependence on prevention-centered security measures 
including access control, document encryption by DRM (Digital Right Management), 
storage device control and email control. Nevertheless, security incident like infor-
mation leakage inevitably occurs. Also, prevention-centered security measures involve 
various problems including hindrance to business efficiency and increase in negative 
awareness of security [3]. Of course, preventing security incident like information leak-
age is important, but it is necessary to improve the ability to detect and respond to the 
signs of leakage as quickly as possible. 

However, it is not easy to detect the information leakage by insider quickly at all. 
The amount of event (access log, usage log, etc.) that is occurred by employees are vast 
and false positive also occurs often [4]. Also, the focus was on detecting unusual be-
havior in the past, but analyzing the misuse cases of employees who have an authority 
and look normal is a difficult task particularly in Korea [5]. Therefore, to monitor the 
signs of information leakage by insider effectively, it is necessary to analyze the current 
state of monitoring by companies and draw the improvement direction. This study is a 
case study on security monitoring to detect the signs of information leakage, among 
insider threats as quickly as possible. For the case study, this study collected the infor-
mation related to security monitoring system being operated by companies in fields of 
finance, manufacturing, and information communication technology in Korea where 
information leakage incident occurs relatively frequently. And this study draws some 
limitations and suggestions by analyzing to which system the security monitoring sys-
tem is linked and which logs are collected and utilized. 

2 Theoretical Background 

2.1 Insider Threat and Information Leakage 

This section describes the definition and types of insider threat and looks at why 
insider threat is important and especially through which routes the information is 
leaked. There are various definitions on insider and in general, insider is defined as a 
person who can access IT system legitimately [6]. Therefore, an insider can be defined 
as a person who has the legal right to access the information assets of an organization 
logically or physically and thus may have a negative influence on confidentiality, in-
tegrity, and availability of information assets. In addition, the term can be distinguished 
from external attacker like hacker, by the term ‘legitimately’. 

As can be seen in the definition above, insider means a person who knows the inter-
nal affairs of an organization. Therefore, an insider is more threatening than an outsider, 
as an insider knows the value of confidential information held by an organization, how 
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log analysis, correlation analysis, and risk calculation [13]. A single log is significant, 
but it is difficult to determine the signs of information leakage with single log only 
exactly and there might be a lot of false positive. Therefore, currently in Korea, most 
companies determine unusual signs by analyzing the correlation with single log and 
multiple log [14]. Logs for security monitoring can be collected at network level, sys-
tem level, and application level [15]. In other words, logs can be collected from busi-
ness system, electronic approval system, and personnel information system as well as 
security system, and the system linked with security monitoring may depend on the 
type and size of company.  

As an analysis result of the past security incident cases in Korea, it appeared that 
information was leaked largely via internet, email and removal storage device [16]. 
Most companies block the use of commercial messenger services and restrict email 
sending via commercial email accounts or control the use of groupware email. Compa-
nies in Korea also detect the access and file upload to unauthorized web sites, and con-
trol the use of removal storage device such as USB and CD to prevent information 
leakage. The information leakage can be detected by setting threshold values based on 
employee’s average file system access and use history [17]. In addition, symptoms of 
information leakage include use patterns of removal storage device, email sending pat-
terns, document extension conversion, and unusual searches of data stored within the 
DB that happened in PC [18].  

Meanwhile, a recent study suggested insider threat detection techniques such as 
anomaly based approach, role based access control, scenario based, using Decoys & 
Honeypots and risk analysis using psychological factors [19]. However, the study did 
not contain what kind of data use and how to detect the malicious behavior in detail. In 
addition, overseas studies related security monitoring did not consider some security 
systems like digital right management and removal storage device control and thus are 
different from the environment of Korea. Studies in Korea related security monitoring 
conduct research on single security system or are not specific on which logs are utilized 
and thus for conducting research from comprehensive perspective, it is necessary to 
analyze the actual monitoring cases by companies and draw improvement measures. 

3 Research Methodology 

There are three types in a case study. The exploratory case study is a way to look at 
the scale or extent of an unfamiliar problem or to suggest ideas for solving problems. 
The descriptive case study is a method of observing a specific phenomenon and sys-
tematically recording the result. The explanatory case study is a method of observing 
specific phenomena and explaining causal relationships.  This study belongs to explor-
atory case study with a flexible design according to Yin’s classification and includes 
semi-structured interviews with document analysis [20]. Since Yin's classification is 
the most cited representative case study, this study was referred to as a research meth-
odology. For a case study, this study analyzed the current state of security monitoring 
operated by three companies in Korea. Three companies, targets of this study are in 
fields of finance, information communication technology and manufacturing, and the 
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to use a system and its vulnerabilities, and how to detour security control [7]. In addi-
tion, an insider’s misbehavior is an ethical issue and if known to the outside, may have 
a bad influence on corporate reputation [1]. Therefore, security measures should be 
prioritized by focusing on security threats like insider’s leakage of confidential infor-
mation, even though incidents by a hacking attack have recently been increasing. 

In general, an insider threat means the abuse and misuse of the authority given one-
self to access the assets of an organization and use them [8]. The term ‘abuse and mis-
use’ includes unintended behavior like making a mistake as well as inappropriate be-
havior stemming from malicious intent. Therefore, an insider’s security threat is an act 
that accesses a system or treats information and data in violation of an organization’s 
security policy, either intentionally or unintentionally [9]. For example, when an em-
ployee accessed a vulnerable website and got infected by malignant code by mistake 
including leakage of company secrets to the outside, the leakage of secrets by hacking 
also belongs to insider’s security threat. 

An insider’s security threat can be classified into Intentional Destruction, Detri-
mental Misuse, Dangerous Tinkering, and Naive Mistakes, depending on the behavior 
intention that may cause damage [10]. Intentional Destruction includes the act to de-
stroy an IT system maliciously or delete information and data and Detrimental Misuse 
means the use of the authority given for a purpose of making personal gains or damag-
ing the company. Dangerous Tinkering and Naive Mistakes mean an act to set up a 
system without using a strong password or considering the security, although there is 
no malicious intent. The information leakage is a malicious violation of security policy 
for personal gains and thus belongs to detrimental misuse and is classified as high-risk 
group. In addition, a recent study suggests the relevance between attitude and security 
[11]. However, there was no explanation about how to detect the deliberate risk-in-
clined behaviors. 

2.2 Security Monitoring 

Most companies in Korea are establishing and operating various security systems to 
prevent information leakage. If a lot of security system is established, the risk level of 
information leakage will be lowered, but business efficiency will also decline and thus 
the current trends are that they establish proper number of security system and detect 
unusual signs quickly. To detect unusual signs, monitoring is essential, and in general, 
the term monitoring is defined as collecting the information related to an individual 
[12]. Therefore, security monitoring can be defined as collecting the information related 
to whether employees are complied with security policies. The security monitoring can 
be divided largely into the following two dimensions [13]. The first is collecting the 
logs of the security system that protects information assets from the external attack 
using Intrusion Detection System, firewall and anti-virus, and detecting whether there 
was an attack or not. The second is collecting the logs of the security system that pro-
tects information assets from mistakes or malicious intention of internal employees and 
detecting unusual signs against organization’s security policy. 

For security monitoring, it is essential to collect and analyze a large amount of sys-
tem logs, and in general, security monitoring is performed in four steps: log collection, 
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log analysis, correlation analysis, and risk calculation [13]. A single log is significant, 
but it is difficult to determine the signs of information leakage with single log only 
exactly and there might be a lot of false positive. Therefore, currently in Korea, most 
companies determine unusual signs by analyzing the correlation with single log and 
multiple log [14]. Logs for security monitoring can be collected at network level, sys-
tem level, and application level [15]. In other words, logs can be collected from busi-
ness system, electronic approval system, and personnel information system as well as 
security system, and the system linked with security monitoring may depend on the 
type and size of company.  

As an analysis result of the past security incident cases in Korea, it appeared that 
information was leaked largely via internet, email and removal storage device [16]. 
Most companies block the use of commercial messenger services and restrict email 
sending via commercial email accounts or control the use of groupware email. Compa-
nies in Korea also detect the access and file upload to unauthorized web sites, and con-
trol the use of removal storage device such as USB and CD to prevent information 
leakage. The information leakage can be detected by setting threshold values based on 
employee’s average file system access and use history [17]. In addition, symptoms of 
information leakage include use patterns of removal storage device, email sending pat-
terns, document extension conversion, and unusual searches of data stored within the 
DB that happened in PC [18].  

Meanwhile, a recent study suggested insider threat detection techniques such as 
anomaly based approach, role based access control, scenario based, using Decoys & 
Honeypots and risk analysis using psychological factors [19]. However, the study did 
not contain what kind of data use and how to detect the malicious behavior in detail. In 
addition, overseas studies related security monitoring did not consider some security 
systems like digital right management and removal storage device control and thus are 
different from the environment of Korea. Studies in Korea related security monitoring 
conduct research on single security system or are not specific on which logs are utilized 
and thus for conducting research from comprehensive perspective, it is necessary to 
analyze the actual monitoring cases by companies and draw improvement measures. 

3 Research Methodology 

There are three types in a case study. The exploratory case study is a way to look at 
the scale or extent of an unfamiliar problem or to suggest ideas for solving problems. 
The descriptive case study is a method of observing a specific phenomenon and sys-
tematically recording the result. The explanatory case study is a method of observing 
specific phenomena and explaining causal relationships.  This study belongs to explor-
atory case study with a flexible design according to Yin’s classification and includes 
semi-structured interviews with document analysis [20]. Since Yin's classification is 
the most cited representative case study, this study was referred to as a research meth-
odology. For a case study, this study analyzed the current state of security monitoring 
operated by three companies in Korea. Three companies, targets of this study are in 
fields of finance, information communication technology and manufacturing, and the 

The 19th World Conference on Information Security Applications

-175-



6 

Company C is applying security policy at intermediate level between Company A 
and B. For example, prior to use of storage device, pre-approval is necessary like com-
pany A. On the other hand, DRM decryption is possible as long as the document is 
created by the user, and in case of email sending, approval is required only if the data 
over 10MB are attached. Also, it is possible to access all websites that are not registered 
in blacklist like Company B. 

Table 1. A list of system linked with security monitoring system and its function 

No. Linked system Function 
Company 
A B C 

1 Information 
asset mgmt. 

To manage hardware and software asset O O O 

2 
Storage device con-
trol 

To control unauthorized storage device 
use O O O 

3 Digital right 
mgmt.. 

To manage document encryption and de-
cryption 

O O O 

4 Email control 
To control groupware and commercial 
email sending O O O 

5 Website  
access control 

To control unauthorized website access 
and file transfer 

O O O 

6 
N/W  
access control 

To control of unauthorized access to inter-
nal network O O O 

7 HR mgmt.. To manage information about employees O O O 

8 Physical  
access control 

To control in and out of authorized and 
unauthorized people 

O O - 

9 
Personal info.  
identification 

To identify document that contains cus-
tomer’s information stored in PC 

O O X 

10 Server 
access control 

To control unauthorized access to server 
of business application 

O O - 

11 DB access control 
To control unauthorized access to DB of 
business application 

O O - 

12 
Illegal software 
block To control installation of illegal software O - - 

13 Printer control To control document printout O - - 

14 Wireless intrusion  
prevention 

To identify and block unauthorized wire-
less AP 

O - - 

15 
Customer  
info. processing 

To manage collection, use, storage and de-
struction of customer information O X X 

16 Design drawing  
mgmt.. 

To control read, screen capture, download 
of design drawing 

X X O 

* O: linked with security monitoring system / X: not established / -: not linked 
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companies that could have a big ripple effect at the national and individual level in case 
of occurrence of information leakage were selected. For collecting companies’ data, we 
pledged to ensure companies' anonymity and use the data for research purposes only. 

3.1 Industrial Background 

Company A is a bank that provides various banking services including deposit, loan, 
foreign exchange, and investment. It belongs to a large-sized bank that holds about 25 
million customers and critical information includes customer information and credit 
information. As the company has experience with security incident in the past, it is 
enforcing considerably strict and limited security policy. Company B belongs to field 
of information communication technology industry that now provides internet portal 
service, mobile community service, and cloud service. Major information includes cus-
tomer information and service development information. As the company thinks em-
ployees’ creativity and speed of service development important, its organizational cul-
ture is relatively freewheeling. Company C is a company that manufactures belongs to 
large-sized company. The critical information is parts design drawing because the com-
pany involves in B2B business, and the number of individual customers is less than 
other companies. An organizational culture is hierarchical, but as the company requires 
employees to be creative, the intensity of security policy is between company A and B. 

3.2 Data Collection and Analysis 

For the case study, we visited three companies and collected data and information 
about security monitoring system. At the first, systems linked with security monitoring 
system were identified to check the coverage of security monitoring system against 
information leakage. Company A has 15, Company B has 11, and Company C has 8 
systems linked with security monitoring system. Of these, 4 security systems, Storage 
device control, Digital right management(DRM), Email control and Website access 
control system are linked with security monitoring system operated by all three com-
panies. Table 1 shows a list of systems linked with security monitoring system operated 
by three companies and its function. 

The four security systems mentioned above have similar main functions, but can be 
different in their operation depending on the policy. In case of Company A, most secu-
rity policies are based on blocking as default because its organizational culture is hier-
archical and rigid. Thus, an approval for exception is necessary. Specially the internal 
network is separated from the external network, the company is blocking so that the 
external network cannot be accessed with the computer connected to the internal net-
work. 

Company B requires employees to be creative and relatively freewheeling organiza-
tional culture is formed and thus when it comes to security policy, its security policy is 
opposite to the Company A’s. Use of storage device and DRM decryption are possible 
by entering reason only and the number of sending emails is not restricted. Also, when 
it comes to website access, it is permitted to access all sites that are even not registered 
in blacklist including harmful website.  
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Company C is applying security policy at intermediate level between Company A 
and B. For example, prior to use of storage device, pre-approval is necessary like com-
pany A. On the other hand, DRM decryption is possible as long as the document is 
created by the user, and in case of email sending, approval is required only if the data 
over 10MB are attached. Also, it is possible to access all websites that are not registered 
in blacklist like Company B. 

Table 1. A list of system linked with security monitoring system and its function 

No. Linked system Function 
Company 
A B C 

1 Information 
asset mgmt. 

To manage hardware and software asset O O O 

2 
Storage device con-
trol 

To control unauthorized storage device 
use O O O 

3 Digital right 
mgmt.. 

To manage document encryption and de-
cryption 

O O O 

4 Email control 
To control groupware and commercial 
email sending O O O 

5 Website  
access control 

To control unauthorized website access 
and file transfer 

O O O 

6 
N/W  
access control 

To control of unauthorized access to inter-
nal network O O O 

7 HR mgmt.. To manage information about employees O O O 

8 Physical  
access control 

To control in and out of authorized and 
unauthorized people 

O O - 

9 
Personal info.  
identification 

To identify document that contains cus-
tomer’s information stored in PC 

O O X 

10 Server 
access control 

To control unauthorized access to server 
of business application 

O O - 

11 DB access control 
To control unauthorized access to DB of 
business application 

O O - 

12 
Illegal software 
block To control installation of illegal software O - - 

13 Printer control To control document printout O - - 

14 Wireless intrusion  
prevention 

To identify and block unauthorized wire-
less AP 

O - - 

15 
Customer  
info. processing 

To manage collection, use, storage and de-
struction of customer information O X X 

16 Design drawing  
mgmt.. 

To control read, screen capture, download 
of design drawing 

X X O 

* O: linked with security monitoring system / X: not established / -: not linked 
 

 

The 19th World Conference on Information Security Applications

-177-



8 

3 Digital right 
mgmt. 

Employee name, user ID, Dept., position, document 
name, document type, creation time, creation user 
name, edit time, encryption time, decryption time, 
number of decryption, number of decryption fail, 
number of print, online/offline login code 

O O O 

Exception type, decryption request time, approval 
time, approval code O X X 

Reason of decryption X O X 

4 Email control 

Employee name, user ID, Dept., position, sender 
name, send time, send IP, title, attached file name, 
attached file size, number of attached file, receiver 
name, receive time, receive IP, CC 

O O O 

E-mail message, approval time, approval code O X O 

5 
Website  
access control 

Host address, access URL, access time, client IP, 
server IP, user ID, attached file name, attached file 
size, number of attached file, block URL, access 
time of block URL, search history 

O O O 

Exception type, access request time, approval time, 
approval code X X O 

6 
N/W  
access control 

User ID, MAC address, IP, OS info., start time, ses-
sion time, end time, policy code, access approval 
code, access fail code, security S/W installation 
code 

O O O 

7 HR mgmt.. 

Employee name, Dept., position, e-mail address, 
phone number, mobile phone number, fax number, 
address, birth date, gender, employment date, res-
ignation date, employment status 

O O O 

Attendance time X O X 

8 
Physical  
access control 

Employee name, employee number, Dept., posi-
tion, badge number, access time, gate number, ac-
cess fail time 

O O - 

9 
Personal info.  
identification 

Employee number, Dept., PC name, MAC, IP, 
search time, number of identification, information 
grade, number of personal information, file path, 
file name, file size, file creation time, file edit time 

O O - 

10 
Server 
access control 

User ID, access time, end time, system name, sever 
IP, client IP O O - 

11 DB access con-
trol 

DBMS IP, DBMS server port, service number, pol-
icy number, login time, logout time, query number, 
query execution time, query end time 

O O - 

12 Illegal software 
block 

S/W ID, S/W type, S/W name, manufacturer, license 
type, license duration, expire date, serial number, 
user ID, blocked S/W name, blocked S/W code, in-
stallation time, installation block time 

O - - 

13 Printer control 
User ID, user name, Dept., document, title, number 
of page, print date, number of copy, printer ID, 
printer port, printer IP, personal information inclu-

O - - 

7 

Analysis of the policies of the three security monitoring systems and the security 
systems of the three companies shows that there is a difference in operation of the se-
curity monitoring system according to environmental factors such as the field of the 
company and the culture of the organization. This means that analyzing the logs col-
lected and used by the security monitoring systems of the three companies makes it 
possible to generalize the monitoring status and to conduct in-depth analysis. In the 
other word, it is possible to identify vulnerabilities that are hard to detect using security 
monitoring system by analyzing logs collected for security monitoring.  

4 Results 

The logs collected by the linked system in the Table 2 were analyzed and the vul-
nerabilities difficult to detect in common by three companies and the weak points by 
each company were drawn. At the first, the three companies all appeared not having 
collected the file types from the removable device control system. In this case, employ-
ees can change file type that not supported to DRM encryption and the leakage is dif-
ficult to detect because it is hard to conduct the correlation analysis of the logs collected 
from removable device control, DRM, and email control system. In case of company 
A and B, both are not collecting the HDD (Hard Disk Drive) information from the 
information asset management system. Thus, employees can release information by 
connecting the detachable HDD to PC where security software is not installed with 
slave. In case of company B, attached files and related logs are collected from the email 
control system, however a log related to the body of the message is not collected. Thus, 
it still has vulnerability in that email can be sent by attaching the service development 
information including source code to the body. In case of Company C, as the company 
does not collect access log and output log, it is difficult to detect the behaviors to print 
out and export the document to the outside. Therefore, based on the above log analysis 
results, it is possible to derive scenarios related to information leakage. 

Table 2. Linked system and collected log 

No. 
Linked sys-

tem 
Collected Log 

Company 
A B C 

1 Information 
asset mgmt. 

Employee name, user ID, Dept., position, PC name, 
MAC, IP, OS info., on/off status, power on time, 
power off time 

O O O 

HDD serial number, number of HDD, HDD detach-
ment code X X O 

2 
Storage device 
control 

PC name, MAC, IP, employee number, employee 
name, user ID, Dept., position, media type, start 
time, end time, file name, file size, number of file, 
download time, upload time, fail time 

O O O 

Exception type, use request time, approval time, 
approval code O X O 

Reason of use X O X 
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3 Digital right 
mgmt. 

Employee name, user ID, Dept., position, document 
name, document type, creation time, creation user 
name, edit time, encryption time, decryption time, 
number of decryption, number of decryption fail, 
number of print, online/offline login code 

O O O 

Exception type, decryption request time, approval 
time, approval code O X X 

Reason of decryption X O X 

4 Email control 

Employee name, user ID, Dept., position, sender 
name, send time, send IP, title, attached file name, 
attached file size, number of attached file, receiver 
name, receive time, receive IP, CC 

O O O 

E-mail message, approval time, approval code O X O 

5 
Website  
access control 

Host address, access URL, access time, client IP, 
server IP, user ID, attached file name, attached file 
size, number of attached file, block URL, access 
time of block URL, search history 

O O O 

Exception type, access request time, approval time, 
approval code X X O 

6 
N/W  
access control 

User ID, MAC address, IP, OS info., start time, ses-
sion time, end time, policy code, access approval 
code, access fail code, security S/W installation 
code 

O O O 

7 HR mgmt.. 

Employee name, Dept., position, e-mail address, 
phone number, mobile phone number, fax number, 
address, birth date, gender, employment date, res-
ignation date, employment status 

O O O 

Attendance time X O X 

8 
Physical  
access control 

Employee name, employee number, Dept., posi-
tion, badge number, access time, gate number, ac-
cess fail time 

O O - 

9 
Personal info.  
identification 

Employee number, Dept., PC name, MAC, IP, 
search time, number of identification, information 
grade, number of personal information, file path, 
file name, file size, file creation time, file edit time 

O O - 

10 
Server 
access control 

User ID, access time, end time, system name, sever 
IP, client IP O O - 

11 DB access con-
trol 

DBMS IP, DBMS server port, service number, pol-
icy number, login time, logout time, query number, 
query execution time, query end time 

O O - 

12 Illegal software 
block 

S/W ID, S/W type, S/W name, manufacturer, license 
type, license duration, expire date, serial number, 
user ID, blocked S/W name, blocked S/W code, in-
stallation time, installation block time 

O - - 

13 Printer control 
User ID, user name, Dept., document, title, number 
of page, print date, number of copy, printer ID, 
printer port, printer IP, personal information inclu-

O - - 
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Table 3. Risk scenarios about information leakage 

No. Scenario Company 

1 
Information leakage using approved removal device 
after changing file type A, B and C 

2 
Information leakage detaching HDD after decryption 
of DRM in regular pattern 

A and B 

3 
Information leakage via email after copying contents 
of document to the body of the email B 

4 Taking document out on weekends after printing the 
document on weekdays 

C 

 
The third risk scenario is related to information leakage via email. Company B is 

monitoring the email sent to the outside, but unlike company A and C, there are no 
restrictions on the email sending. Also, email sending monitoring focuses on attached 
file and does not collect the body of email and related logs. Therefore, company B’s 
important information such as customer information and system development infor-
mation can be sent to the outside through the body of email. Therefore, to detect such 
leakage, it is necessary to add rules to detect the type of important information like 
Social Security Number or if major scripts used for coding in case of system develop-
ment are inserted into the body of email to detect information leakage. 

The final risk scenario is related to information leakage through printout. In case of 
company C, the history of printout is left when printing the encoded document with 
DRM, however it is difficult to detect if storing the document that decrypted DRM in 
constant patterns and then going to work during holidays and printing out in quantity, 
because the security monitoring system does not collect separate logs from the printer. 
Moreover, as access logs are not collected from the physical access control system, it 
is difficult for the employees who do not go to work during holidays to go to work 
during the holidays and look for the abnormal signs. Of course, it is difficult to install 
individual access control devices residing in several companies within one building, 
but the attendance patterns during holidays can be identified if utilizing the other logs 
including document work history and website access history that occur during holidays. 
Also, if decrypted document ends, DRM is automatically encoded and thus if a lot of 
document are encoded with DRM suddenly, it is necessary to add the rules to detect 
this into the security monitoring system. 

5 Conclusions 

Information leakage by insider is recognized as the company’s ethical issue and 
known to have bigger ripple effects than the information leakage by external attack like 
hacking. Especially in Korean companies, 80% of the subjects who involve in infor-
mation leakage are insiders and so information leakage by insider emerges as a serious 
social problem. On one hand, most Korean companies are establishing preventive se-
curity policies but security incidents are occurring every year, and to overcome this, it 

9 

sion code, print request time, reason of print, ap-
proval time, approval code, approval after print, 
expected document discard date 

14 
Wireless intru-
sion  
prevention 

Time, host name, host location, IP, SSID, event 
code, event block, AP category, access time, end 
time 

O - - 

15 
Customer  
info. processing 

Processing ID, Processing name, customer name, 
user ID, user IP, use time, use category (creation, 
edit, read, download, print) 

O - - 

16 
Design draw-
ing  
mgmt.. 

Employee name, user ID, Dept., position, IP, design 
drawing number, design drawing name, authority 
code, read time, print time, print screen time, 
download time, reason of download 

- - O 

* O: collected / X: not collected / -: not linked 
 

As seen in the above section, three companies all are operating the security monitor-
ing system, but have still some vulnerability difficult to detect information leakage. 
This section draws risk scenarios about information leakage by using such vulnerability 
and provides improvement directions. Risk scenarios and related companies are sum-
marized in Table 3.  

The first risk scenario belongs to information leakage using the vulnerability related 
to change of file type. If employees recognize that their behaviors are being monitored, 
they can export information to the outside using approved storage device by changing 
the file type to graphic file (JPG, GIF etc.) or text file (txt), i.e. by deceiving the file as 
personal data rather than work data in order to minimize the doubts of administrator or 
security staff. To detect such scenario, it is necessary to collect additional file type logs 
from removable device control, DRM, and email control system and track the history 
of document change of the same name, size, and type. 

The second risk scenario belongs to information leakage using the vulnerability re-
lated to detachable HDD. In case of company A’s security policy, approval is necessary 
for DRM decryption and company B should enter reason for decryption. Also, if the 
decryption pattern increases, this can be detected as unusual sign through security mon-
itoring system. However, if DRM decryption is conducted in constant patterns, the se-
curity monitoring system has limitations in that it is difficult to detect by recognizing 
this as normal behavior. Moreover, the use of removable device is being controlled, 
however the security monitoring system does not collect the HDD related logs. Thus, 
there is a possibility to decrypt DRM in constant patterns and keep important document 
in storage and then export the detachable HDD to the outside. Lock can be installed to 
the frame of PC however employees might release the lock arbitrarily, and security 
staffs have to put a lot of time and effort to regular check of lock on PC used by all 
employees. Therefore, company A and B need to collect additional HDD information 
to detect whether HDD is detached or not as quickly as possible. 
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Table 3. Risk scenarios about information leakage 

No. Scenario Company 

1 
Information leakage using approved removal device 
after changing file type A, B and C 

2 
Information leakage detaching HDD after decryption 
of DRM in regular pattern 

A and B 

3 
Information leakage via email after copying contents 
of document to the body of the email B 

4 Taking document out on weekends after printing the 
document on weekdays 

C 

 
The third risk scenario is related to information leakage via email. Company B is 

monitoring the email sent to the outside, but unlike company A and C, there are no 
restrictions on the email sending. Also, email sending monitoring focuses on attached 
file and does not collect the body of email and related logs. Therefore, company B’s 
important information such as customer information and system development infor-
mation can be sent to the outside through the body of email. Therefore, to detect such 
leakage, it is necessary to add rules to detect the type of important information like 
Social Security Number or if major scripts used for coding in case of system develop-
ment are inserted into the body of email to detect information leakage. 

The final risk scenario is related to information leakage through printout. In case of 
company C, the history of printout is left when printing the encoded document with 
DRM, however it is difficult to detect if storing the document that decrypted DRM in 
constant patterns and then going to work during holidays and printing out in quantity, 
because the security monitoring system does not collect separate logs from the printer. 
Moreover, as access logs are not collected from the physical access control system, it 
is difficult for the employees who do not go to work during holidays to go to work 
during the holidays and look for the abnormal signs. Of course, it is difficult to install 
individual access control devices residing in several companies within one building, 
but the attendance patterns during holidays can be identified if utilizing the other logs 
including document work history and website access history that occur during holidays. 
Also, if decrypted document ends, DRM is automatically encoded and thus if a lot of 
document are encoded with DRM suddenly, it is necessary to add the rules to detect 
this into the security monitoring system. 

5 Conclusions 

Information leakage by insider is recognized as the company’s ethical issue and 
known to have bigger ripple effects than the information leakage by external attack like 
hacking. Especially in Korean companies, 80% of the subjects who involve in infor-
mation leakage are insiders and so information leakage by insider emerges as a serious 
social problem. On one hand, most Korean companies are establishing preventive se-
curity policies but security incidents are occurring every year, and to overcome this, it 

The 19th World Conference on Information Security Applications

-181-



12 
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is necessary to improve the ability to detect the signs of leakage as quickly as possible. 
The security monitoring is a necessary task for detecting the signs of information leak-
age. Overseas security monitoring related studies were conducted focusing on the meth-
ods to detect the attack from the outside and did not consider the security system oper-
ated by Korean companies. On the other hand, Korean security monitoring related stud-
ies conducted research on single security system or were not specific on which logs 
were utilized, and so to study from comprehensive perspective, it is necessary to ana-
lyze the actual monitoring cases of the companies.  

This study analyzed the current state of security monitoring system operated by three 
companies in Korea. For a case study, company’s security polices, systems linked with 
security monitoring system and logs were collected. Also, after identifying the vulner-
ability difficult to detect with the current security monitoring system, the risk scenarios 
that were likely to occur in the future were drawn and the methods to detect this were 
proposed. In this study we collected the security monitoring cases of the companies that 
held different industrial field, organizational culture, and security policy and general-
ized them to some extent. The result of this study will be useful for the companies that 
are planning to establish security monitoring system. Also, overseas companies that 
have similar security policies to Korean companies are expected to improve the detec-
tion performance of security monitoring system by referring to the risk scenarios. 
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Abstract. Modern military systems operated with a complex of computers and 
software may have mission failure which is caused by undetected attacks. In 
such situations, it is important to find out which assets are damaged. After iden-
tifying damaged assets, we need toimmediately examine the damaged assets to 
defend against the attacks. However, it is not straightforward to explore the 
damaged assets because there are the complicated relationships among assets, 
tasks and missions. In this paper, we propose an effective methodology to infer 
the damaged assets given observed mission impacts in a Bayesian framework. 
We used Bayesian networks to model assets, tasks, missions and to set the rela-
tionships among them. Our approach visually infers and identifies the damaged 
assets with the probability. We show that proposed Bayesian framework is 
practical and useful with the use case experiment.  

Keywords:Mission Impact Assessment, Bayesian Network, Cyber Warfare. 

1 Introduction 

As more information technology appliances are used, it is more difficult to build ef-
fective situation awareness system which detect significant but unpredictable opera-
tional risks. This situation makes the system operators struggle to find out how the 
asset damages can affect missions. Therefore, defining the relationships among assets, 
task, missions and assessing asset damage, impact propagation are essential for mili-
tary systems. There have been several researches on Battle Damage Assessment 
(BDA) and Mission Impact Assessment (MIA) to find out the current ability to per-
form missions under the asset damages.  

Previous researches focused on the damage propagations from assets to tasks and 
missions. In such situations, a monitoring systems or sensors should detect the dam-
ages on the assets first. However, there can be attacks that cannot be detected by the 
monitoring systems or sensors. For example, if an enemy exploits a zero-day vulnera-
bility and succeeds in the attack, the mission can fail while the damage on an asset is 
still not detected [1]. Such attacks can lead to the failure of missions without observ-
ing any damage on assets. Even though the enemy does not use a zero-day vulnerabil-
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model. In mission dependency models, a Bayesian network is used for building a 
probabilistic dependency models and for assessing mission impact. 

Previous works have focused onstudying on how the asset damages propagate to 
missions. Previous works assume that the attacks are detected and then the mission 
impacts are calculated according to the damages. However, in this paper we assume 
the situation that we are not able to detect the attacks when missions fail. The goal of 
our study is to find the damaged assets when we observe mission failures caused by 
undetected attacks.  

3 Terminology  

Before we state the methodology, we define the word used throughout the paper. 

 Mission - A set of tasks that fulfills a purpose or duty 
 Task - A piece of work done as part of a mission 
 Asset - Hardware or software that supports one or more tasks  
 Impact - An quantitative assessment of how much a mission is affected by a given 

activity or situation [5] 
 Damage - A quantitative assessment corresponding to the state(s) a given asset is 

in with respect to its ability to perform a given role [5] 
 Vulnerability - A specific weakness in the protections or defenses surrounding 

assets 

For example, “surface to air defense” for an area can be a mission and “detecting 
air tracks”, “intercepting enemy fighter” can be tasks which support the mission. 
Equipment which comprises radar system like “transmitter”, “receiver” and “signal 
processor” can be assets that support the task “detecting air tracks”. An asset can sup-
port one or more tasks and a task can support one or more missions.  
“Impact” and “Damage” seem to be similar terms, howeverthey are not the same. 

Impact is generally the result of some damage [6]. In this paper, we use “damage” for 
negative influence on assets and “Impact” for negative influence on tasks and mis-
sions. 

4 Damaged Assets Inference Using Bayesian Networks 

Bayesian networks are probabilistic models based on directed acyclic graphs and has 
capability for bidirectional inferences which can model the top-down (semantic) and 
bottom-up (perceptual) combination of evidence [7]. A key feature of Bayesian net-
works is the ability to locally interpret individual parameters, i.e. to locally interpret 
individual probabilities of conditional probability distributions [4]. This feature pro-
vides a direct understandability to all conditional probabilities, i.e. we can make an 
inference for undetected damaged assets from observing impacted missions using 
Bayesian networks.  

2 

ity, it is hard to apply security patches to all the assets in time if there are hundreds of 
assets to manage.  

If mission failure is caused by undetected asset damages, we should find out which 
assets were damaged. If there are a few assets for a mission, we can check all the 
assets one by one. However, if there are hundreds of assets involving a mission, it is 
impossible to check all the assets in a limited time. In this point of view, it is valuable 
to find undetected damaged assets by observing a mission failure. In this paper, we 
infer the damaged assets from an observation of the mission impact using a Bayesian 
network.  

The main contribution of this paper can be summarized as follows: We introduce a 
new way in analyzing the relationships among assets, tasks and missions. Previous 
researches tried to assess the mission impact when asset damages are detected. Instead 
of assessing asset damage propagation, we focused on making damaged assets infe-
rence from observing mission impacts when there is mission failure caused by unde-
tected attacks. To infer the damaged assets, we propose a Bayesian framework which 
can be constructed practically using Logical AND and Noisy-OR relationships. We 
can therefore infer the damaged assets by getting the probabilities of damages for 
each asset. We show that this methodology is practical and usefulwith use case expe-
riments.  

The remainder of this paper is structured as follows. In section 2, we will review 
the related researches that have been done on the Mission Impact Assessment and 
Bayesian networks. In section 3, we define the terms used throughout this paper. In 
section 4, we describe the method for building a Bayesian network, which consists of 
assets, tasks, mission and their relationships. We show how we make damaged assets 
inference from an observation of a mission impact by constructing a Bayesian net-
work. In section 5, we describe the implementation of the Bayesian network and re-
sult of the experiments.  

2 Related Work 

Jakobson [2] proposed a conceptual framework and a method for assessing impact 
that cyber attacks might have to cyber assets, services, and missions. The framework 
builds the model of a mission, service and assets, and impact dependency graph. It 
presents an algorithmic base how to calculate impacts that cyber attacks cause, how 
the direct impacts propagate through the service, and mission dependencies and affect 
the operational capacity of missions. 

Sun et al. [3] introduced System Object Dependency Graph (SODG) to capture the 
intrusion propagation process at low operating system level. On the top of the SODG, 
a mission-task-asset (MTA) map can be established to associate the system objects 
with tasks and missions. A Bayesian network for MTA can be constructed and it can 
be used to find missions being tainted and to assess quantitative mission impact. 

Motzeket al.[4] proposed a mathematical mission impact assessment, based on a 
probabilistic approach using mission dependency models and resource dependency 
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model. In mission dependency models, a Bayesian network is used for building a 
probabilistic dependency models and for assessing mission impact. 
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air tracks”, “intercepting enemy fighter” can be tasks which support the mission. 
Equipment which comprises radar system like “transmitter”, “receiver” and “signal 
processor” can be assets that support the task “detecting air tracks”. An asset can sup-
port one or more tasks and a task can support one or more missions.  
“Impact” and “Damage” seem to be similar terms, howeverthey are not the same. 

Impact is generally the result of some damage [6]. In this paper, we use “damage” for 
negative influence on assets and “Impact” for negative influence on tasks and mis-
sions. 

4 Damaged Assets Inference Using Bayesian Networks 

Bayesian networks are probabilistic models based on directed acyclic graphs and has 
capability for bidirectional inferences which can model the top-down (semantic) and 
bottom-up (perceptual) combination of evidence [7]. A key feature of Bayesian net-
works is the ability to locally interpret individual parameters, i.e. to locally interpret 
individual probabilities of conditional probability distributions [4]. This feature pro-
vides a direct understandability to all conditional probabilities, i.e. we can make an 
inference for undetected damaged assets from observing impacted missions using 
Bayesian networks.  
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Our purpose is not to figure out how much the assets are damaged with exact fig-
ures but to find out which assets are more probably damaged. Therefore, we define 
the state of the node to be binary, i.e. the states of assets can be damaged(True) or 
undamaged(False). The states of tasks and missions can be impacted(True) or not 
impacted(False). 

4.2 Edge Relation 

Military assets can be targets of enemies and tend to be attacked by them. Therefore, 
many military systems are constructed with redundancy. For example, a radar system 
can have two transmitters for high availability. In such a radar system, it can fulfill the 
task even though one transmitter is out of orderand it can be impacted when both 
transmitters are out of order.  

We depict redundancy relations with dashed edges in Bayesian networks. Parent 
nodes with dashed edges are in “AND Relation” which means that all the parent 
nodes should be damaged or impacted to impact the child node. For example, in Fig. 
1, if A3 is damaged and A4, A2 are not damaged, then T2 is not impacted. Such con-
cept of relations was also described in [2]. There can be two or more redundant assets 
in real situation, so two or more nodes can be in the same AND relation.  

In addition to the concept in [2], we revised the AND relation to have the concept 
of groups.For example, inradar system stated above, a radar system can have two 
transmitters, and two receivers for high availability. In this situation, two transmitters 
can be two assets in a same AND group and two receivers can be two assets in anoth-
er AND group. In such a radar system, it can fulfill the task even though one transmit-
ter and one transmitter are out of order.  
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An : Assets
Tn : Tasks
Mn : Missions

 
Fig. 2.Example of AND relation groups 

An example for AND group is shown in Fig. 2 and it depicts a sub-graph of a Baye-
sian network.In Fig. 2,A5, A6 perform the same functions, and A7, A8, A9 perform 
other same functions. Then {A5, A6} becomes an AND group and {A7, A8, A9} be-
comes another AND group. Task T4 will not be impacted if at least one asset in each 
group is not damaged. 

4 

We need to construct a Bayesian network to find out the damaged assets which are 
undetected when a mission fails. Fig. 1 shows a Bayesian network for assets, tasks, 
missions and their relationships. In this example, we constructed a small network that 
has four assets, three tasks, and two missions for easy explanation.  
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Mn : Missions
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0.90.90.8

 
Fig. 1.A Bayesian network for assets, tasks, missions 

When applying this methodology on the real military systems, experts who design or 
operate the military system are supposed to identify assets, tasks and missions and to 
construct the Bayesian network. The construction of a Bayesian network should be 
done by the experts who thoroughly understand the system to obtain the correct result. 

Fig. 1 is an example of a simple Bayesian network that describes assets, tasks, mis-
sions and the damage propagation. Fig. 1 has is a little different from a typical Baye-
sian network. It has the probabilities on the edges instead of having conditional prob-
ability tables and it has the edges with AND or OR relations that a typical Bayesian 
network does not have. We will describe the notation of the Bayesian network and its 
application in the following sections. 

4.1 Nodes and Edges 

In Fig. 1, circles are nodes that denote assets, tasks and missions. For example, A1 
means the first asset, T2 means the second task and M1 means the first mission. We 
denoted assets, tasks and missions by number for simple notation. However, stating 
explanatory phrases like “surface to air defense” for nodes would be intuitive when 
building a Bayesian network.  

Directed lines are edges that denote the probabilities that the child nodes are im-
pacted when a parent node is damaged or impacted. For example, if A2 is damaged, 
the damage can propagate to T2 for the probability of 0.8. If T3 is impacted, the im-
pact can propagate to M1 for the probability of 0.5 and to M2 for the probability of 
0.9.  
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Our purpose is not to figure out how much the assets are damaged with exact fig-
ures but to find out which assets are more probably damaged. Therefore, we define 
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cept of relations was also described in [2]. There can be two or more redundant assets 
in real situation, so two or more nodes can be in the same AND relation.  
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Probability for OR Relation.Noisy-OR is applied for “OR Relation” and it means 
that damage or impact of only one parent node can affect the child node. The formula 
for Noisy-OR can be expressed as : 

)p(Xi  =                     otherwise ,  p(e - (1 - 1   
 False is X all if ,                   0     

jX: j j

j







 ))
               (2) 

The notation is same as logical AND.  

Generalized Probability. In our Bayesian network, „AND Relation‟ and „OR Rela-
tion‟ can exist together and there can be several groups of „AND Relation‟ edges for 
one child node.Therefore, the formula can be generalized as : 
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Yk is the parent node of Xi and other notation is same as Logical AND and Noisy-OR. 
The example of a CPT for logical AND and noisy-OR is depicted in Table I.It shows 
the CPT for task T2 in Fig. 1. A3 and A4 are in AND relation for T2 and the edge prob-
abilities are 0.9 each. One edge from A2 to T2 is in OR relation and has the probability 
of 0.8. When A2, A3, A4 are all damaged(True), the possibility can be calculated using 
Eq. (3) and the result is 1 – (1 - 0.9 * 0.9) * (1 - 0.8) = 0.962. 

Risk of Assets.Risk of assets should be identified prior to the assessment. Risk of 
assets means how the assets are vulnerable or how the assets can be easily attacked by 
enemies. Risk of assets can be expressed as the probability of the assets to be dam-
aged. i.e. P(An). 

The „health‟ of the assets can be measured by security posture metric (SPM) [11]. 
SPM can be calculated by Common Vulnerability Scoring System(CVSS)[12] and 
SPM is a value between 0 and 1, where 1 represents a „safe‟ asset. The formulation of 
SPM is shown in Eq. (4).   
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j jn,
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CVSSn,j is the score of vulnerability An has. Scores range from 0 to 10, with 10 being 
the most severe. By using SPM we can calculate the probability of the asset risk as 
shown in Eq. (5). 

6 

Relation other than “AND Relation” is “OR Relation”, which means that only one 
damage or impact of parent nodes can affect the child node. We explain how the 
probabilities are calculated for AND relation and OR relation in section 4.3. 

4.3 Conditional Probability Tables (CPTs) 

We should build conditional probability tables(CPTs) to make inference from a Baye-
sian network. CPTs state the probabilities of each node as the state of parent nodes 
changes. For example, Table 1.expressesthe CPT for T2 in Fig. 1. As we can see in 
Table I, if a node has n parents, there are 2n entries for the CPT of the node. 

Table 1.Conditional probability table for T2 

A2 A3 A4 
T2 

T F 
F F F 0 1 
F F T 0 1 
F T F 0 1 
F T T 0.81 0.19 
T F F 0.8 0.2 
T F T 0.8 0.2 
T T F 0.8 0.2 
T T T 0.962 0.038 

 
The entries of the CPT increase exponentially as the parent nodes increase. For exam-
ple, if a task is affected by 10 assets, there exists 210=1024 entries in a CPT. We stated 
that the construction of a Bayesian network should be done by experts. In this case, 
experts should enter 1024 entries for one node, and it isimpossible for the human to 
enter all the entry. To resolve this difficulty, we adopt the concept of Noisy-
OR[9][10] and logical AND[8].We can reduce the entities that the experts should fill 
out usinglogical AND and Noisy-OR methodology. The probabilities in eachentry can 
be calculated by the formulas stated in the following sections.As a result, the experts 
only have to grade the probabilities of each edge instead of filling out all the entities 
in conditional probability tables. 

Probability for AND Relation.Logical AND is applied for “AND Relation” and it 
means that damage can propagate only if all the parent nodes which have the “AND 
Relation” of same groups are damaged or impacted. The formula for logical AND can 
be expressed as : 

)p(Xi  =                         otherwise ,  p(e
 False is X oneleast at  if,            0           

jX: j j

j







 )
              (1) 

p(Xi) is the probability distribution of child node Xi. Xj is the parent node whose val-
ue is True. And ej is the edge between child node Xi and parent node Xj and p(ej) is 
the probability of ej.  
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CVSSn,j is the score of vulnerability An has. Scores range from 0 to 10, with 10 being 
the most severe. By using SPM we can calculate the probability of the asset risk as 
shown in Eq. (5). 
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4.5 Extension of Bayesian networks 

So far, we explained the Bayesian network which has inter-dependency, i.e. the de-
pendency exists between asset nodes and task nodes, also between task nodes and 
mission nodes.  

In our Bayesian framework, we can extend the network to have the concept of in-
tra-dependency introduced in [2]. Intra-dependency means that there can be relation-
ships among assets and also among tasks and missions. 

The example of a Bayesian network that has intra-dependency is shown in Fig.3. In 
this example, the graph is still directed acyclic, so our Bayesian framework can work 
by the methodology we described above. However, if there are nodes which has mu-
tual dependency, then the graph becomes cyclic and the Bayesian framework would 
not work. 

5 Experiments 

In this section, we apply our methodology on a real world use case. The code imple-
mentation was made on MATLAB R2016b using Bayes Net Toolbox [13].  

We present a simplified and abstract weapon system using a Bayesian Network de-
scribed in Fig.4.There are two missions, which are surface-to-air defense and the air-
to-air defense and there exists two weapon systems, which are a surface-to-air defense 
system and an air-to-air defense system for each mission. Each mission comprises 
three tasks, which are detecting air targets, intercepting air targets and sharing infor-
mation. Detecting air targets is a role of radar system and the assets can be signal 
processors and transmitters/receivers. To intercept air targets, missile launchers are 
needed for the assets. Sharing information is needed for exact situation awareness and 
communication equipment like tactical data link equipment is needed as assets. The 
explanation for each node is shown in Table 2. 
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Fig. 4.A Bayesian network for air defense missions 
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 P(An)= 1 – SPM(An) (5) 

This probability of an asset means how easily the enemy can damage or compromise 
the asset. In this paper, we used CVSS score for the quantitative measure and other 
mothods can be used for calculating risk probabilities of assets. 

4.4 Finding Damaged Assets 

If we have the risk probabilitiesof each asset i.e. P(An) and the CPTs for all tasks and 
missions, we can make an inference of damaged assets from observation of mission 
impacts. The probabilitiesof an asset damage given a mission failure can be calculated 
as shown in Eq. (6). 

 Pi(An) = P(An| Mi = T) (6) 

Pi(An) is the conditional probability of asset An given the condition that mission Miis 
impacted. For example in Fig. 1, if M1 is impacted, the probability that A2can have 
damage is P(A2 | M1=T) and it can be calculated by summing out other nodes.  

We can get the damage probabilities of all the assets and we can rank them. As a 
result, we can prioritize assets we should examine first when we observe a mission 
impact without asset damage detection. 
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Fig. 3. An example of a Bayesian network that has intra-dependency relationships 
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4.5 Extension of Bayesian networks 

So far, we explained the Bayesian network which has inter-dependency, i.e. the de-
pendency exists between asset nodes and task nodes, also between task nodes and 
mission nodes.  

In our Bayesian framework, we can extend the network to have the concept of in-
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The example of a Bayesian network that has intra-dependency is shown in Fig.3. In 
this example, the graph is still directed acyclic, so our Bayesian framework can work 
by the methodology we described above. However, if there are nodes which has mu-
tual dependency, then the graph becomes cyclic and the Bayesian framework would 
not work. 

5 Experiments 

In this section, we apply our methodology on a real world use case. The code imple-
mentation was made on MATLAB R2016b using Bayes Net Toolbox [13].  

We present a simplified and abstract weapon system using a Bayesian Network de-
scribed in Fig.4.There are two missions, which are surface-to-air defense and the air-
to-air defense and there exists two weapon systems, which are a surface-to-air defense 
system and an air-to-air defense system for each mission. Each mission comprises 
three tasks, which are detecting air targets, intercepting air targets and sharing infor-
mation. Detecting air targets is a role of radar system and the assets can be signal 
processors and transmitters/receivers. To intercept air targets, missile launchers are 
needed for the assets. Sharing information is needed for exact situation awareness and 
communication equipment like tactical data link equipment is needed as assets. The 
explanation for each node is shown in Table 2. 
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If we do not have the Bayesian framework and all the information we have is just 
predefined fixed possibility of asset vulnerability, we should examine all the assets 
one by one in a brute-force way to find out the damaged asset because all the risk 
probability for the asset is the same. However, we can estimate the probabilities of the 
asset damages based on the condition that the mission is failed. The probabilities of 
the asset damages after the failure of the surface-to-air defense mission are shown in 
Fig. 5. 

The most probabilities of assets damages for the surface-to-air defense weapon 
system are raised by 8%~26% compared to the original probability. However, the 
probability of the signal processor of radar(A3) has raised by more than 170%. If the 
attacker intends to attack the transmitter/receiver, then the attacker should attack two 
transmitters/receivers at the same time because they have redundancy relationships. 
On the other hand, if the attacker intends to attack the signal processor, the attacker 
have to attack only one asset because the signal processor does not have a redundan-
cy. Therefore, the Bayesian framework analyzes that it is easier for the attacker to 
attack the signal processor and raises its damage probability. Using the result of the 
analysis we can prioritize the assets to examine first. 

In this use case, it can be intuitive to find out the most probable asset that an at-
tacker would aim because the network is small and the relationships are not compli-
cated. However, if the network becomeslarger and the relationships get more compli-
cated, it would be impossible to find out the most probable damaged asset by human 
intuition. In such cases, our Bayesian framework can prioritize the assets to be ex-
amined first.  

6 Conclusion 

In this paper, we have proposed a Bayesian network model for assets, tasks and mis-
sions and their relationships to infer damaged assets from observing an impacted mis-
sion. This methodology enables prioritizing the assets to be examinedfirst when we 
fail to detect the asset damages. 

We used an intuitive and mathematical method in modeling Bayesian networks and 
calculating the probabilities.Building Bayesian networks and setting conditional prob-
ability tables are intuitive and feasible for experts who are responsible for managing 
them. The experts define the assets, tasks, missions and set the relationships among 
them by AND relation or OR relation edges and then set probabilities of the edges 
thatmean the impact probabilities of child nodes when the parent nodes are damaged 
or impacted. Instead of entering all the entities of conditional probability tables, the 
conditional probability tables are set automatically using the formula based on the 
edge values and the relationships among them. We showed that the inference is feasi-
ble and practical by the use case experiments. 

We are continuing our research for the Bayesian framework which has mutual de-
pendency and for other complementary researches relating issues on finding damaged 
assets. 

10 

As shown in Fig. 4., some assets have redundancy and the others do not have redun-
dancy. For the simplification, we assume that the assets have the same risk probabili-
ties for assets and impact propagation probabilities have similar values as shown in 
Fig. 4.We supposed that all the risk probability of asset is 0.3. 

Table 2. Description for the nodes in the Bayesian network for air defense missions 

Label Description Weapon System Category 
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A2 
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Air-to-Air defense 

A9 
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A13 Missile launcher A14 
T1 Detecting air targets Surface-to-Air defense 

Task 

T2 Intercepting air targets 

T3 Sharing information Surface-to-Air defense 
Air-to-Air defense 

T4 Detecting air targets Air-to-Air defense 
T5 Intercepting air targets Air-to-Air defense 
M1 Surface-to-Air defense Surface-to-Air defense Mission M2 Air-to-Air defense Air-to-Air defense 

 
After building aBayesian network, we assumed that surface-to-air defense mission 
failed and then calculated the possibilities of the asset damages.  
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Fig. 5.Probabilities of assets damages based on the condition that the mission is failed 
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transmitters/receivers at the same time because they have redundancy relationships. 
On the other hand, if the attacker intends to attack the signal processor, the attacker 
have to attack only one asset because the signal processor does not have a redundan-
cy. Therefore, the Bayesian framework analyzes that it is easier for the attacker to 
attack the signal processor and raises its damage probability. Using the result of the 
analysis we can prioritize the assets to examine first. 

In this use case, it can be intuitive to find out the most probable asset that an at-
tacker would aim because the network is small and the relationships are not compli-
cated. However, if the network becomeslarger and the relationships get more compli-
cated, it would be impossible to find out the most probable damaged asset by human 
intuition. In such cases, our Bayesian framework can prioritize the assets to be ex-
amined first.  

6 Conclusion 

In this paper, we have proposed a Bayesian network model for assets, tasks and mis-
sions and their relationships to infer damaged assets from observing an impacted mis-
sion. This methodology enables prioritizing the assets to be examinedfirst when we 
fail to detect the asset damages. 

We used an intuitive and mathematical method in modeling Bayesian networks and 
calculating the probabilities.Building Bayesian networks and setting conditional prob-
ability tables are intuitive and feasible for experts who are responsible for managing 
them. The experts define the assets, tasks, missions and set the relationships among 
them by AND relation or OR relation edges and then set probabilities of the edges 
thatmean the impact probabilities of child nodes when the parent nodes are damaged 
or impacted. Instead of entering all the entities of conditional probability tables, the 
conditional probability tables are set automatically using the formula based on the 
edge values and the relationships among them. We showed that the inference is feasi-
ble and practical by the use case experiments. 

We are continuing our research for the Bayesian framework which has mutual de-
pendency and for other complementary researches relating issues on finding damaged 
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Abstract. Voice assistant is an application that helps users to inter-
act with their devices using voice commands in a more intuitive and
natural manner. Recently, many voice assistant applications have been
popularly deployed on smartphones and voice-controlled smart speakers.
However, the threat and security of those applications have been exam-
ined only in very few studies. In this paper, we identify potential threats
to voice assistant applications and assess the risk of those threats using
the STRIDE and DREAD models. Our threat modeling demonstrates
that generic voice assistants can potentially have 16 security threats. To
mitigate the identified threats, we also discuss several defense strategies.

Keywords: Voice assistant · Threat modeling · STRIDE · DREAD

1 Introduction

Voice assistant is a software program that helps users to interact with services
(e.g., search engine) and applications (phone application) using voice commands
with a more intuitive and convenient user interface mechanism. In general, voice
assistant application runs as a background process and can be activated by
using a reserved voice command (e.g., “Hey, Siri” and “Alexa”). Popular voice
assistants including Siri (Apple), Alexa (Amazon) and Now (Google) help people
shop online, send instant messages, and make phone calls, all through voice com-
mands. However, to our knowledge there is no study analyzing security threats
to voice assistants through a threat modeling process. Only a few studies exper-
imentally demonstrated that commercial voice assistant applications are vulner-
able to various forms of voice presentation attacks (e.g., [4, 11]).

The goal of this paper is to identify potentially serious security threats to
voice assistants and suggest several mitigation techniques to mitigate them. We
first identify what threats exist and how risky the threats are by using the Se-
curity Development Lifecycle (SDL) threat modeling tool [10] that systemically
analyzes threats based on the data flow diagrams of a target system. The tool
has been widely used for identifying security threats and analyzing corresponding
security requirements. The key contributions of this paper are as follows:
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– Tampering is data corruption during network communication.
– Repudiation is a user’s refusal to acknowledge participation in a transaction.
– Information disclosure is the unwanted exposure and loss of private data’s

confidentiality.
– Denial of Service (DoS) is an attack against system availability.
– Elevation of privileges is an attempt to raise the privilege level of users by

exploiting vulnerabilities.

DREAD is mainly used for quantifying the level of risks caused by threats [2].
In this paper, we used the DREAD model because it is especially useful to rank
and prioritize threats according to their severity.s Using the DREAD model,
we can quantify the severity of each threat with numeric values (0, 5 and 10)
assigned to each of the five categories described as follows [1], and consequently
identify the threats that need to be dealt with higher priorities.s

– Damage Potential measures the extent of the possible damage incurred
by a threat. If the attacker could damage the entire system and data by
exploiting a vulnerability, it would be the worst (10).

– Reproducibility measures how easy the attack or threat can be repeated.
– Exploitability is a metric that quantifies how much effort is required to

launch an attack. If anyone can launch an attack, it would be the worst (10).
– Affected Users captures how many people would be affected if the attack

was launched. It is usually a measure of what percentage of users are affected.
– Discoverability is a metric that indicates how easy a threat can be de-

tected. If an attack is easily identifiable, it would be 10.

3 Security analysis

3.1 Data Flow Diagram (DFD)

To identify security threats, we first draw a DFD (see Figure 2) with the eight
entities using the Microsoft’s threat modeling tool [10]. Human user is an entity
who uses the Voice assistant application (app) and controls IoT devices

through the app. The voice assistant is working with a Voice assistant server

to process a user’s voice commands. The server typically converts the user’s voice
command to a service request message and sends it to an appropriate cloud server
that can provide the service requested by the user. In addition, it is especially
important to obtain a DFD that reflects the procedures of real-world voice as-
sistant systems for practical modeling of threats. The DFD shown in Figure 2
has been constructed through our real development process, and has a strong
similarity with popular voice assistant systems (e.g., Siri and Alexa).

The SDL threat modeling tool analyzed the DFD and automatically identi-
fied a list of 36 potential threats based on the STRIDE categories. We carefully
examined the feasibility of attacks exploiting those vulnerabilities, identified that
20 of the identified threats are unrealistic in real-world settings, and finally se-
lected 16 threats as valid ones by excluding the unrealistic threats. For example,

2 G. Cho et al.

– We provide a security analysis based on the SDL threat modeling method-
ology. We describe how a generic voice assistant application works with a
data flow diagram. We then use the STRIDE approach [10] for categorizing
16 identified threats and the DREAD model [2] for assessing the risk of the
threats (read Section 3).

– We discuss three possible attack scenarios that could lead to severe damages
to systems using voice assistant applications (read Section 4) and suggest
several defense mechanisms to mitigate those threats (read Section 5).

2 Background

2.1 Voice assistant

Voice assistants have become more widely used for many purposes (e.g., playing
music, setting timers and getting weather forecasts). Figure 1 shows an example
architecture of voice assistant systems. A user initiates a voice assistant by issu-
ing a voice command. For example, a user says, “what time is it?” and the voice
assistant delivers the user’s voice stream that the user requested to a voice as-
sistant server. Next, the server interprets the voice stream and then requests the
corresponding service to the cloud. The response to the user’s voice command is
delivered in the reverse order of the service request process. Consequently, the
user can obtain the response of requested command.

Fig. 1. A generic architecture of voice assistant systems.

2.2 Threat modeling

Threat modeling is a process to identify potential threats to a system and eval-
uate the risk levels of identified threats. This process is helpful for reducing the
risk from threats in the target system. In this paper, we use a threat modeling
tool [10] to identify threats to voice assistant systems in a more systematic

STRIDE is a threat classification model developed by Microsoft. STRIDE is an
acronym containing the following concepts [10]. Our primary goal in this paper
is to identify and categorize threats against voice assistant systems from the
attacker’s point of view, and the STRIDE model fits this goal.

– Spoofing is an attempt to gain access to a system using a forged identity.
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who uses the Voice assistant application (app) and controls IoT devices
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that can provide the service requested by the user. In addition, it is especially
important to obtain a DFD that reflects the procedures of real-world voice as-
sistant systems for practical modeling of threats. The DFD shown in Figure 2
has been constructed through our real development process, and has a strong
similarity with popular voice assistant systems (e.g., Siri and Alexa).

The SDL threat modeling tool analyzed the DFD and automatically identi-
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examined the feasibility of attacks exploiting those vulnerabilities, identified that
20 of the identified threats are unrealistic in real-world settings, and finally se-
lected 16 threats as valid ones by excluding the unrealistic threats. For example,
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– Spoofing: An attacker may attempt to spoof Microphone by impersonating
a legitimate human user’s voice. As a possible implementation, the attacker
can simply record a victim’s voices and replay them.

– Tampering: A voice command issued by Human user could be captured
and modified by the attacker. Due to the broadcast nature of sound signals,
anyone can hear and record the voice command. The attacker can then
modify the recorded voice signals to generate the malformed voice command
that causes unauthorized operations to be performed

– Denial of Service: The role of Microphone is to receive the voice command
from Human User and deliver it to Voice assistant app. The attacker can
possibly launch a DoS attack by continuously injecting attack sounds to
interfere with the normal voice command from the legitimate Human User.
To secretly launch such attacks, the attacker might use hidden [4] and/or
inaudible sounds [11] that a human cannot recognize and/or hear.

Audio signal to Voice assistant server. Voice assistant app makes a re-
quest to analyze the audio signal (voice command) received from Microphone.
Between Voice assistant app and Voice assistant server, spoofing attacks
could be launched.

– Spoofing: The spoofing attack can be launched against Voice assistant

server if there is no authentication mechanism. By impersonating a legit-
imate Voice assistant app, an attacker can transmit unauthorized audio
signals to Voice assistant server. Consequently, the attacker can access
the voice assistant service in an unauthorized manner.

Service reply to voice assistant app. Voice assistant server sends a
reply to Voice assistant app. From the reply, Voice assistant app decides
what operation to perform. We identified four possible threats on this data flow
as follows.

– Tampering: The service reply might be tampered by the attacker if there
is no guarantee on the integrity of the service reply. That is, the attacker
can capture a service reply and modify it to deceive Voice assistant app.
Consequently, the attacker can deliver the malformed service reply to cause
unauthorized operations on Voice assistant app or distribute unwanted
information (e.g., advertisements) to Voice assistant app.

– Information Disclosure: The attacker might launch a sniffing attack of
the service reply if there is no confidentiality protection of the service reply.
For example, if the service reply is not encrypted, the attacker can extract
some privacy sensitive information by eavesdropping the service reply.

– Denial of Service: The attacker could perform a DoS attack to disrupt
the availability of Voice assistant app. The attacker has two options of
DoS attacks. The attacker generates a service reply (with tampering attack)
to contain malformed commands that might compromise the availability

4 G. Cho et al.

Fig. 2. DFD for generic voice assistant systems. The red rectangle indicates within
voice assistant device.

in Figure 2, the spoofing attack on voice command to Microphone has been
proved as a feasible attack by some previous studies [4, 11], thus we categorized
it as a valid threat. As another example, on the other hand, the spoofing attack
on command response to Human user is categorized as an invalid one, because
it is unrealistic to assume that an attacker is able to put a fake speaker or
physically compromise a victim’s device without being detected by the victim.

3.2 Security threat analysis

To identify the security threats of the voice assistant system, we focus on analyz-
ing threats associated with the following inbound/outbound data flows to/from
the device (denoted as Device trust boundary) where Speaker, Microphone
and Voice assistant app are placed; voice command, audio signal, service re-
ply, control request, action response, and command response in Figure 2. We do
not consider the data flows inside the device trust boundary since we assume
no physical attack against the voice assistant device. In addition, we ignore
the data flows between IoT controller and IoT devices and between Voice

assistant server and Cloud services in this analysis, which are not directly
related with the voice assistant device. In the following, we will discuss 16 pos-
sible threats associated with the six data flows mentioned above.

Voice command to Microphone. Human user issues a voice command to ac-
tivate the Voice assistant app and the voice command first arrives at Microphone.
We found four possible threats between Human user and Microphone.
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server if there is no authentication mechanism. By impersonating a legit-
imate Voice assistant app, an attacker can transmit unauthorized audio
signals to Voice assistant server. Consequently, the attacker can access
the voice assistant service in an unauthorized manner.

Service reply to voice assistant app. Voice assistant server sends a
reply to Voice assistant app. From the reply, Voice assistant app decides
what operation to perform. We identified four possible threats on this data flow
as follows.

– Tampering: The service reply might be tampered by the attacker if there
is no guarantee on the integrity of the service reply. That is, the attacker
can capture a service reply and modify it to deceive Voice assistant app.
Consequently, the attacker can deliver the malformed service reply to cause
unauthorized operations on Voice assistant app or distribute unwanted
information (e.g., advertisements) to Voice assistant app.

– Information Disclosure: The attacker might launch a sniffing attack of
the service reply if there is no confidentiality protection of the service reply.
For example, if the service reply is not encrypted, the attacker can extract
some privacy sensitive information by eavesdropping the service reply.

– Denial of Service: The attacker could perform a DoS attack to disrupt
the availability of Voice assistant app. The attacker has two options of
DoS attacks. The attacker generates a service reply (with tampering attack)
to contain malformed commands that might compromise the availability
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Voice assistant app by injecting an excessive amount of action responses.
As a result, such DoS attacks can seriously disrupt normal operations of
Voice assistant app.

– Elevation of Privilege: The action response could be misused by an at-
tacker for illegal privilege escalation. For this attack, the attacker can gener-
ate an action response with malicious commands to exploit some vulnerabil-
ities (e.g., vulnerable functions, insecure administrator password, etc.) and
inject the action response to Voice assistant app. The execution of these
malicious commands possibly allows the attacker to get a higher privilege
than what is normally given by Voice assistant app.

Command response to human user. Human user obtains a service response
via Speaker, which is the result of the voice command issued by Human user. We
found that some sensitive information might be exposed to those who are phys-
ically close to Speaker because the command responses are usually broadcasted
over air.

– Information Disclosure: Speaker simply broadcasts a service response
over the air. Thus if the service response contains some sensitive information,
anyone within the audible range can hear and/or record the service response.
For this reason, Human user who wants to receive a command response from
Speaker should carefully run Voice assistant app.

3.3 Risk analysis

This section explains how we can evaluate the risk of each threat identified in
Section 3.2 based on the DREAD assessment model [10, 6]. We focus on assessing
how effective attacks are and how easy they are to launch. Each DREAD rating
is the average of 5 categories and calculated using (D +R+ E +A+D)/5.

We calculated the risk score (0, 5, and 10) of each of the 16 threats based
on the DREAD model (see Table 1) and categorized the 16 threats into the
following 3 orders of priority according to their risk scores: low (0 to 3), medium
(4 to 7) and high (over 8). In summary, the 16 threats were categorized as
follows: 2 threats in the low, 10 threats in the medium, and 4 threats in the
high. In the following, we will describe the detailed procedure in which risk
scores are calculated for several examples of threats (spoofing and DoS attack
against Microphone, information disclosure of service reply).

Spoofing attack against microphone. The open nature of the voice channels
and the lack of authentication mechanisms make the voice assistants vulnerable
to spoofing attacks such as voice replay attacks and voice impersonation attacks.
As a result of spoofing attacks, an attacker can gain legitimate users’ privileges
(Damage Potential = 10). To launch such spoofing attack, the attacker gener-
ally require simple tools (e.g., recorders, speakers) without requiring sophisti-
cated skills (Exploitability = 10), and this makes the attacks easy to launch and
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of Voice assistant app. The other option is to send a massive amount of
service replies and consequently cause congestion on Voice assistant app.

– Elevation of Privileges: The attacker can generate malformed service
replies containing malicious commands to exploit some vulnerabilities (e.g.,
vulnerable functions, insecure administrator password, etc.) on Voice assistant

app. The execution of these malicious commands may allow the attacker to
get a higher privilege than what is normally given by Voice assistant app.

Control request to IoT controller. Control requests are generated when
Human user tries to control IoT devices with voice commands. We identified
a threat that allows an attacker to spoof IoT controller with forged requests.

– Spoofing: A spoofing attack against IoT controller might be possible if
there is no authentication mechanism between Voice assistant app and
IoT controller. By impersonating Voice assistant app, the attacker can
inject malicious control requests to IoT controller, and these forged con-
trol requests eventually allow the attacker to control security critical IoT
devices (e.g., a digital door lock).

– Tampering: A tampering attack against IoT controller is possible if
there is no integrity protection of control requests. Modifying control requests
is to perform unauthorized operations on IoT devices (e.g., unlocking the
door and forcibly turning on the fire alarm).

Action response to Voice assistant app. IoT controller responds Voice
assistant app with an action response generated by IoT devices. The action
response contains some information collected by IoT devices, such as the cur-
rent temperature in the user’s home, and also the status of IoT devices. We
will explain six possible threats on the action response between IoT controller

and Voice assistant app.

– Spoofing: Voice assistant app might be spoofed by an attacker if there
is no authentication mechanism between Voice assistant app and IoT

controller. The attacker can send an action response to Voice assistant

app by impersonating IoT controller. As a result, the attacker can send
any action response to Voice assistant app.

– Tampering: Without a proper integrity protection of an action response,
an attacker can intentionally modify any captured action response and inject
the forged action response to Voice assistant app.

– Information Disclosure: A sniffing attack against an action response is
possible if there is no confidentiality protection of an action response. If an
action response is transmitted without encryption, the attacker can easily
obtain sensitive information from a captured action response.

– Denial of Service: The attacker can inject malformed action responses
with some malicious commands whose execution causes intentional faults
on Voice assistant app. In addition, the attacker can cause congestion on
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Voice assistant app by injecting an excessive amount of action responses.
As a result, such DoS attacks can seriously disrupt normal operations of
Voice assistant app.

– Elevation of Privilege: The action response could be misused by an at-
tacker for illegal privilege escalation. For this attack, the attacker can gener-
ate an action response with malicious commands to exploit some vulnerabil-
ities (e.g., vulnerable functions, insecure administrator password, etc.) and
inject the action response to Voice assistant app. The execution of these
malicious commands possibly allows the attacker to get a higher privilege
than what is normally given by Voice assistant app.

Command response to human user. Human user obtains a service response
via Speaker, which is the result of the voice command issued by Human user. We
found that some sensitive information might be exposed to those who are phys-
ically close to Speaker because the command responses are usually broadcasted
over air.

– Information Disclosure: Speaker simply broadcasts a service response
over the air. Thus if the service response contains some sensitive information,
anyone within the audible range can hear and/or record the service response.
For this reason, Human user who wants to receive a command response from
Speaker should carefully run Voice assistant app.

3.3 Risk analysis

This section explains how we can evaluate the risk of each threat identified in
Section 3.2 based on the DREAD assessment model [10, 6]. We focus on assessing
how effective attacks are and how easy they are to launch. Each DREAD rating
is the average of 5 categories and calculated using (D +R+ E +A+D)/5.

We calculated the risk score (0, 5, and 10) of each of the 16 threats based
on the DREAD model (see Table 1) and categorized the 16 threats into the
following 3 orders of priority according to their risk scores: low (0 to 3), medium
(4 to 7) and high (over 8). In summary, the 16 threats were categorized as
follows: 2 threats in the low, 10 threats in the medium, and 4 threats in the
high. In the following, we will describe the detailed procedure in which risk
scores are calculated for several examples of threats (spoofing and DoS attack
against Microphone, information disclosure of service reply).

Spoofing attack against microphone. The open nature of the voice channels
and the lack of authentication mechanisms make the voice assistants vulnerable
to spoofing attacks such as voice replay attacks and voice impersonation attacks.
As a result of spoofing attacks, an attacker can gain legitimate users’ privileges
(Damage Potential = 10). To launch such spoofing attack, the attacker gener-
ally require simple tools (e.g., recorders, speakers) without requiring sophisti-
cated skills (Exploitability = 10), and this makes the attacks easy to launch and
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wants (Reproducibility = 10). In addition, sniffing attacks only require simple
tools, and this makes these attacks easy to launch (Exploitability = 10). Voice
assistant server is generally connected with a lot of users to provide them
with services, and sniffing service replies from Voice assistant server can
affect the privacy of all the users (Affected Users = 10). Due to the nature of
information leakage, users do not know that their information has been leaked
until the information is illegally used, and this makes it difficult to detect such
sniffing attacks (Discoverability = 0).

4 Attack scenarios

4.1 Spoofing against microphone scenario

The open nature of voice channels and the lack of authentication mechanisms
make voice assistants vulnerable to spoofing attacks such as voice replay attacks
and voice impersonation attacks. Although audio microphones and speakers are
enough to launch spoofing attacks, other sophisticated techniques such as signal
processing can also be used to further improve the effectiveness of the attacks. For
example, an attacker can use the so-called sound mosaic technique [8] to generate
malicious voice commands from voice sound samples of victims, collected in
advance. Specifically, the sound mosaic technique allows the attacker to generate
malicious voice commands by dividing and concatenating victims’ voice samples.
This technique is especially useful for impersonating famous people whose voice
samples can be gathered easily.

Most of voice assistants do not provide voice authentication, that is, they
do not care about who issues voice commands. This inherently makes them vul-
nerable to attacks injecting malicious voice commands. Although voice assistant
devices are usually placed in the proximity of users, such attacks are still possible
in this environment without raising the victim’s attention, by injecting malicious
voice commands that are only recognizable by machines but not by humans [4,
11]. For example, an attacker can secretly embed inaudible malicious voice com-
mands into a television broadcast or an announcement on elevators so that the
malicious voice commands affect voice assistants in a stealthy manner.

4.2 DoS against microphone scenario

Because the voice sounds are easily influenced by their surrounding environ-
ments, the voice assistant on a smartphone does not work well near a busy road
or around a construction site. Therefore, it is possible to generate a sound which
influences the voice assistant. DoS attack usually occurs in a network, and it
is mitigated by blocking the packets or limiting the service requests. Unlike de-
tecting traditional DoS attacks, the attack against the voice assistants is hard to
recognize and prevent. Especially, if the attacker uses inaudible sounds for the
DoS attacks, it is very hard for users to discover the attack occurring.
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Table 1. Risk assessment of voice assistant.

Data flow Threat D R E A D Average

Voice command
Spoofing on Microphone 10 10 10 10 10 10
Tampering with voice command 10 0 0 10 0 4
DoS to Microphone 0 10 0 10 0 4

Audio signal Spoofing on Voice assistant server 0 0 10 5 0 3

Service reply

Tampering with service reply 10 10 10 10 5 9
Information disclosure of service reply 10 10 10 10 0 8
DoS to Voice assistant app 0 10 5 10 10 7
Elevation of privilege into Voice

assistant app
10 10 0 10 0 6

Control request
Spoofing on IoT controller 10 10 5 10 0 7
Tampering with control request 10 10 5 10 10 9

Action response

Spoofing on IoT controller 0 10 5 10 10 7
Tampering with action response 0 10 0 10 10 6
Information disclosure of action re-
sponse

10 10 5 5 0 6

DoS to Voice assistant app 0 10 10 10 10 10
Elevation of privilege into Voice

assistant app
10 0 0 0 0 2

Command response
Information disclosure of command re-
sponse

0 10 10 10 0 6

reproduce (Reproducibility = 10). Most voice assistants are focusing on text-
to-speech translation and service provisioning without paying much attention to
security (Discoverability = 10), thus the impacts of these types of attacks are
significant (Affected Users = 10). Taking all these aspects into consideration,
the DREAD rating is set to 10 and its priority is set to high.

DoS attack against microphone. An attacker can launch DoS attacks against
Microphone to disrupt the normal operations of voice assistants. Such DoS at-
tacks interrupt legitimate users from using the voice assistant normally, but they
do not directly damage the system and data (Damage Potential = 0). A simple
form of DoS attack is playing audio files of attack sounds via a speaker, and
this type of attack can not only be reproduced easily (Reproducibility =10) but
also affect most voice assistant users (Affected Users = 10). On the other hand,
other types of DoS attack are not easy to launch because they require some
specialized skills such as generating inaudible sounds (Exploitability = 0). In
the case of using inaudible sounds, it is difficult for users to detect the attacks
(Discoverability = 0). As a result, the DREAD rating is calculated as 4 and its
priority is set to medium.

Information disclosure of service reply. Service replies from Voice assistant

server may be sniffed by an attacker. Depending on the types of data an at-
tacker sniffs, it may be used to attack other parts of the system. Information
disclosure can cause both direct and indirect damages to the system and data as-
sets of users (Damage Potential = 10). With the assumption that service replies
are not encrypted, sniffing service replies can be repeated whenever an attacker
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wants (Reproducibility = 10). In addition, sniffing attacks only require simple
tools, and this makes these attacks easy to launch (Exploitability = 10). Voice
assistant server is generally connected with a lot of users to provide them
with services, and sniffing service replies from Voice assistant server can
affect the privacy of all the users (Affected Users = 10). Due to the nature of
information leakage, users do not know that their information has been leaked
until the information is illegally used, and this makes it difficult to detect such
sniffing attacks (Discoverability = 0).

4 Attack scenarios

4.1 Spoofing against microphone scenario

The open nature of voice channels and the lack of authentication mechanisms
make voice assistants vulnerable to spoofing attacks such as voice replay attacks
and voice impersonation attacks. Although audio microphones and speakers are
enough to launch spoofing attacks, other sophisticated techniques such as signal
processing can also be used to further improve the effectiveness of the attacks. For
example, an attacker can use the so-called sound mosaic technique [8] to generate
malicious voice commands from voice sound samples of victims, collected in
advance. Specifically, the sound mosaic technique allows the attacker to generate
malicious voice commands by dividing and concatenating victims’ voice samples.
This technique is especially useful for impersonating famous people whose voice
samples can be gathered easily.

Most of voice assistants do not provide voice authentication, that is, they
do not care about who issues voice commands. This inherently makes them vul-
nerable to attacks injecting malicious voice commands. Although voice assistant
devices are usually placed in the proximity of users, such attacks are still possible
in this environment without raising the victim’s attention, by injecting malicious
voice commands that are only recognizable by machines but not by humans [4,
11]. For example, an attacker can secretly embed inaudible malicious voice com-
mands into a television broadcast or an announcement on elevators so that the
malicious voice commands affect voice assistants in a stealthy manner.

4.2 DoS against microphone scenario

Because the voice sounds are easily influenced by their surrounding environ-
ments, the voice assistant on a smartphone does not work well near a busy road
or around a construction site. Therefore, it is possible to generate a sound which
influences the voice assistant. DoS attack usually occurs in a network, and it
is mitigated by blocking the packets or limiting the service requests. Unlike de-
tecting traditional DoS attacks, the attack against the voice assistants is hard to
recognize and prevent. Especially, if the attacker uses inaudible sounds for the
DoS attacks, it is very hard for users to discover the attack occurring.
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Table 2. Suggested mitigation according to STRIDE category.

Data flow Threat and Mitigation

Voice
command

Spoofing on microphone: Identify the authenticity of the voice
command (e.g., voice recognition, voice liveness detection).
Tampering with voice command: Provide a detection mechanism
for distinguishing legitimate users’ voice commands from forged ones.
DoS to microphone: Deploy low-pass filter to cut off higher fre-
quency than audio frequency.

Audio
signal

Spoofing on voice assistant server: Identify the legitimate voice
assistant application using authentication mechanism.

Service
reply

Tampering with service reply: Protect the integrity of the service
reply (e.g., HMAC), or use a secure channel.
Information disclosure of service reply: Encrypt the service re-
ply (e.g., TLS), or use a secure channel.
DoS to voice assistant application: Limit the number of the
service reply, or use a filter to distinguish malformed response or
command.
Elevation of privilege into voice assistant application: Check
the validity of the input data (e.g., length of the input data).

Control
request

Spoofing on IoT controller: Identify the legitimate voice assistant
application using authentication mechanism.
Tampering with control request: Protect the integrity of control
requests (e.g., HMAC), or use a secure channel.

Action
response

Spoofing on IoT controller: Identify the legitimate voice assistant
application using authentication mechanism.
Tampering with action response: Provide the integrity of action
response (e.g., HMAC), or use secure channel.
Information disclosure of action response: Encrypt the action
response (e.g., TLS), or use a secure channel.
DoS to voice assistant application: Limit the number of action
response, or use a filter to distinguish malformed response.
Elevation of privilege into voice assistant app: Check the va-
lidity of the input data (e.g., check the length of the input data) and
use secure function within voice assistant application.

Command
response

Information disclosure of command response: Avoid using
command responses containing sensitive information about the user.

The other threats can also be handled by a variety of mitigation methods.
According to a given situation and capabilities, the mitigation methods should
be properly chosen and implemented. Unsurprisingly, mitigation methods are not
secure forever. Therefore, threat modeling analysts should periodically analyze
possible threats and prepare proper strategies to mitigate those threats.

6 Conclusion

This paper analyzed potential security threats for voice assistant systems and
suggested several mitigation strategies to reduces the risk of the identified threats
through threat modeling analysis that has been widely used in the field of in-
formation security. Based on the threat analysis results, we also presented sev-
eral attack scenarios. Finally, we proposed several practical defense strategies to
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4.3 Information disclosure of service response scenario

The service reply might contain a variety of information including the user’s
condition, what the user’s interests are, some sensitive data and and so on. The
attacker can obtain much information by sniffing the communication channel.
This leaked information can be used in social engineering attacks or phishing
attacks. To mitigate this threat, packet encryption is the best strategy but the
attacker may still infer some sensitive information from encrypted packets when
encryption schemes are insecurely implemented. For example, traffic analysis
(e.g., [7]) can be applied to obtain some sensitive information even when network
packets are encrypted. Thus, the developer should carefully implement a secure
encryption algorithm with a proper encryption mode and a padding scheme.

5 Recommendations

In this section, we offer some practical recommendations to mitigate potentially
serious security scenarios described in Section 4.

To mitigate the spoofing attack in Section 4.1, destination authentication
and liveness detection in data flows are required. That is, the voice assistant
has to identify who the voice’s owner is and whether the voice is generated
in the present, not the past. One of the voice owner identification methods is
the voiceprint analysis [5]. A voiceprint is the characteristics of a human voice,
and the characteristics are unique. In the cloud computing, the accuracy of the
voiceprint authentication achieved 3.2% in FRR (False Reject Rate) [13].

The voiceprint method is vulnerable to recorded voice. Therefore, voice as-
sistants have to use the liveness detection method. The liveness detection calcu-
lates phoneme localization with two microphones. Through the liveness detection
method, the voice assistant can distinguish whether the input voice is from the
user in real time or replayed. Zhang et al. [12] achieved over 99% accuracy and
under 1% EER (Equal Error Rate).

To mitigate the denial of service attack of Section 4.2, limiting availability in
data flows is required. That is, the voice assistant has to input the audible hertz
sounds (e.g., 20–20,000 Hz) using signal processing for low pass filter. If the voice
assistant only accepts the human audible sound ranging from 20 to 20,000 Hz,
it is easier to detect anomalies. DoS attacks can be mitigated by limiting the
number of the input data flows and filtering malformed data.

The simplest way to prevent the information disclosure in Section 4.3 is the
encryption of data flows, such as SSL/TLS network protocols. However, im-
perfect encryption can still lead to information leakages. Many Android apps
use SSL/TLS to protect their sensitive information. However, the sensitive data
protected by SSL/TLS was vulnerable to Man-in-the-Middle attacks because
some developers often used incorrect options or implementations [9]. In addi-
tion, the HTTPS protocol which is popularly used in protecting home banking,
e-commerce, and e-procurement was vulnerable to Man-in-the-Middle attacks
when the attacker had access to the victim’s network [3].
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Table 2. Suggested mitigation according to STRIDE category.

Data flow Threat and Mitigation

Voice
command

Spoofing on microphone: Identify the authenticity of the voice
command (e.g., voice recognition, voice liveness detection).
Tampering with voice command: Provide a detection mechanism
for distinguishing legitimate users’ voice commands from forged ones.
DoS to microphone: Deploy low-pass filter to cut off higher fre-
quency than audio frequency.

Audio
signal

Spoofing on voice assistant server: Identify the legitimate voice
assistant application using authentication mechanism.

Service
reply

Tampering with service reply: Protect the integrity of the service
reply (e.g., HMAC), or use a secure channel.
Information disclosure of service reply: Encrypt the service re-
ply (e.g., TLS), or use a secure channel.
DoS to voice assistant application: Limit the number of the
service reply, or use a filter to distinguish malformed response or
command.
Elevation of privilege into voice assistant application: Check
the validity of the input data (e.g., length of the input data).

Control
request

Spoofing on IoT controller: Identify the legitimate voice assistant
application using authentication mechanism.
Tampering with control request: Protect the integrity of control
requests (e.g., HMAC), or use a secure channel.

Action
response

Spoofing on IoT controller: Identify the legitimate voice assistant
application using authentication mechanism.
Tampering with action response: Provide the integrity of action
response (e.g., HMAC), or use secure channel.
Information disclosure of action response: Encrypt the action
response (e.g., TLS), or use a secure channel.
DoS to voice assistant application: Limit the number of action
response, or use a filter to distinguish malformed response.
Elevation of privilege into voice assistant app: Check the va-
lidity of the input data (e.g., check the length of the input data) and
use secure function within voice assistant application.

Command
response

Information disclosure of command response: Avoid using
command responses containing sensitive information about the user.

The other threats can also be handled by a variety of mitigation methods.
According to a given situation and capabilities, the mitigation methods should
be properly chosen and implemented. Unsurprisingly, mitigation methods are not
secure forever. Therefore, threat modeling analysts should periodically analyze
possible threats and prepare proper strategies to mitigate those threats.

6 Conclusion

This paper analyzed potential security threats for voice assistant systems and
suggested several mitigation strategies to reduces the risk of the identified threats
through threat modeling analysis that has been widely used in the field of in-
formation security. Based on the threat analysis results, we also presented sev-
eral attack scenarios. Finally, we proposed several practical defense strategies to
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mitigate the identified threats. In future work, we will implement the discovered
attacks against real-world voice assistant systems to show their feasibility.
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Abstract. Security is not just a technical problem, but it is a business
problem. Companies are facing highly-sophisticated and targeted cyber
attacks everyday, and losing a huge amount of money as well as private
data. Threat intelligence helps in predicting and reacting to such prob-
lems, but extracting well-organized threat intelligence from enormous
amount of information is significantly challenging. In this paper, we pro-
pose a novel technique for visualizing security alerts, and implement it
in a system that we call AlertVision, which provides an analyst with a
visual summary about the correlation between security alerts. The visu-
alization helps in understanding various threats in wild in an intuitive
manner, and eventually benefits the analyst to build TI. We applied our
technique on real-world data obtained from the network of 85 organiza-
tions, which include 5,801,619 security events in total, and summarized
lessons learned.

Keywords: Threat intelligence · Alert visualization · Alert correlation.

1 Introduction

Security is a growing concern for enterprises and organizations with ever-evolving
attack techniques. Today’s security threats involve complex attack scenarios, and
are designed to cause persistent damage against specific targets. They are often
called an Advanced Persistent Threat, or APT in short [37]. APT actors typically
leverage ‘advanced’ techniques such as code obfuscation and metamorphism [27]
in order to thwart the detection.

Traditional defense approaches, e.g., Intrusion Detection System (IDS) [2],
are not sufficient to handle APTs, because their focus is only on attack instances.
That is, conventional defenses are mainly about understanding the behavior
of malware instances, analyzing what kind of vulnerabilities are exploited, or
figuring out what kind of techniques are used to bypass defenses. However, such
information can vary depending on the victim as well as the attack campaign.
Furthermore, responding to each and every threat by analyzing them is not
feasible anyways in practice as they appear on a daily basis.

To deal with APTs, enterprises now try to utilize Threat Intelligence (TI),
which is well-refined knowledge about threats with outward focus. That is, TI
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called an Advanced Persistent Threat, or APT in short [37]. APT actors typically
leverage ‘advanced’ techniques such as code obfuscation and metamorphism [27]
in order to thwart the detection.

Traditional defense approaches, e.g., Intrusion Detection System (IDS) [2],
are not sufficient to handle APTs, because their focus is only on attack instances.
That is, conventional defenses are mainly about understanding the behavior
of malware instances, analyzing what kind of vulnerabilities are exploited, or
figuring out what kind of techniques are used to bypass defenses. However, such
information can vary depending on the victim as well as the attack campaign.
Furthermore, responding to each and every threat by analyzing them is not
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which is well-refined knowledge about threats with outward focus. That is, TI
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2. We evaluated our technique on a large dataset obtained from real SIEM
devices in wild.

3. We empirically show that security analysts can benefit from our visualization
framework in terms of detecting previously unknown attacks.

2 Background

This section introduces the concept of local sequence alignment algorithm and
force-directed graph layout algorithm, which serve as the basis of our alert visu-
alization approach.

2.1 Local Sequence Alignment Algorithm

Sequence alignment is a way of arranging sequences. There are mainly two cate-
gories: local and global sequence alignment. Local sequence alignment algorithm
finds similar subsequences between two sequences. Global alignment algorithm
aims to obtain an end-to-end alignment between two sequences, whereas local
alignment algorithm focuses on subsequences. Since we are dealing with SIEM
event sequences that are different in their size and their look, we use local se-
quence alignment algorithm to obtain the similarity between the subsequences.

The most popular local sequence alignment algorithm is Smith-Waterman [34],
which is a variation of Needleman-Wunsch algorithm [25]. Smith-Waterman al-
gorithm is widely adopted in various areas in security such as malware anal-
ysis [15] and intrusion detection [3]. The algorithm takes in two sequences
s1 = a1, a2, . . . , am and s2 = b1, b2, . . . , bn of length m and n, respectively, and
computes a scoring matrix H as follows. First, it constructs a (m+1)-by-(n+1)
scoring matrix H, where Hk0 = H0l = 0 for 0 ≤ k ≤ m and 0 ≤ l ≤ n. It
then fills in the scoring matrix with the following equation where s(a, b) is a
similarity score of the two elements a and b, and Wk is the penalty of having a
gap of length k:

Hij = max




Hi−1,j−1 + s(ai, bj),
maxk≥1{Hi−k,j −Wk},
maxl≥1{Hi,j−l −Wl},
0.

(1 ≤ i ≤ m, 1 ≤ j ≤ n)

Finally, it traces back from a cell in H of the highest score to the one with a
score 0, which constitutes the most similar subsequence of s1 and s2.

The time complexity of the classic Smith-Waterman algorithm is O(m2n),
but Gotoh et al. [8] proposed an algorithm of O(m + n) time complexity, and
Myers et al. [24] showed an algorithm of O(n) space complexity. There are also
several linear-time and linear-space sub-optimal algorithms [11], which make lo-
cal sequence alignment even more practical. Furthermore, there are several recent
attempts to leverage GPU to accelerate the Smith-Waterman algorithm [26,28].

2 Hong et al.

includes information beyond attack instances such as the behavioral patterns of
the threat actors, their intent, and their characteristics. It is widely known that
TI can help prevent security threats in a proactive manner [1].

Although TI-based defense is a promising direction, extracting TI from mas-
sive information obtained in wild is challenging because there are too many
attack instances to consider. Companies employ Security Information and Event
Management (SIEM) systems to detect threats and collect the corresponding
events, which typically produce thousands of events per hour. It is not clear
how to interpret and correlate those events to understand the attackers behind
the scene. Furthermore, there can be false alerts from SIEM systems, which can
easily confuse the TI generation process.

The current best practice in building TI is to correlate alerts generated from
various IDS/IPS systems and identifies high-level patterns of current attacks.
This process is often called alert correlation [23], and it can be used to identify
unknown threats in the future. Most research in this field currently focuses on
improving their accuracy [30, 32, 36], but an automated way of visualizing the
correlation between security alerts is largely unexplored to date.

In this paper we present a simple and effective approach to visualize security
alerts obtained from SIEM systems. We argue that such visual aids help analysts
understand the characteristics of the attacks and the attackers behind, which
often do not change regardless of the attack campaign: attackers tend to behave
similarly even though the actual attack methodology may vary. To this end, we
implement AlertVision, a visualization system for SIEM alerts, and evaluate it
on real-world SIEM logs, which constitute 5,801,619 alerts in total.

To visualize security alerts, AlertVision first groups them based on their
property, and produces a set of alert sequences. Each grouped sequence repre-
sents a feature of attack incidents, e.g., an attack source IP or a target service.
Our system then computes similarity between the sequences, and visualizes their
relationships in a graph. The key intuition here is that two or more features that
are seemingly irrelevant can be similar to each other, and visualizing their re-
lationship can often help understand the meaning of the incidents. To figure
out the similarity between two distinct event sequences, it leverages a sequence
alignment algorithm used in bioinformatics [34].

The primary challenge of AlertVision is to draw a graph where the coordi-
nates of the nodes are not known, but only the distances, i.e., the similarity, be-
tween them are known. We leverage a force-directed graph drawing algorithm [7],
which can draw a graph in a space based only on their relative distances. The
resulting graph provides a useful insight to analysts because it can reveal that
two seemingly different alert sequences are indeed similar to each other in the
graph. Unlike traditional cluster analysis such as hierarchical clustering, the
graph instantly presents visual evidence to analysts.

Our main contributions are as follows.

1. We propose a technique for visualizing relationship between attackers, which
can help in understanding the meaning of security incidents.
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2. We evaluated our technique on a large dataset obtained from real SIEM
devices in wild.

3. We empirically show that security analysts can benefit from our visualization
framework in terms of detecting previously unknown attacks.

2 Background

This section introduces the concept of local sequence alignment algorithm and
force-directed graph layout algorithm, which serve as the basis of our alert visu-
alization approach.

2.1 Local Sequence Alignment Algorithm

Sequence alignment is a way of arranging sequences. There are mainly two cate-
gories: local and global sequence alignment. Local sequence alignment algorithm
finds similar subsequences between two sequences. Global alignment algorithm
aims to obtain an end-to-end alignment between two sequences, whereas local
alignment algorithm focuses on subsequences. Since we are dealing with SIEM
event sequences that are different in their size and their look, we use local se-
quence alignment algorithm to obtain the similarity between the subsequences.

The most popular local sequence alignment algorithm is Smith-Waterman [34],
which is a variation of Needleman-Wunsch algorithm [25]. Smith-Waterman al-
gorithm is widely adopted in various areas in security such as malware anal-
ysis [15] and intrusion detection [3]. The algorithm takes in two sequences
s1 = a1, a2, . . . , am and s2 = b1, b2, . . . , bn of length m and n, respectively, and
computes a scoring matrix H as follows. First, it constructs a (m+1)-by-(n+1)
scoring matrix H, where Hk0 = H0l = 0 for 0 ≤ k ≤ m and 0 ≤ l ≤ n. It
then fills in the scoring matrix with the following equation where s(a, b) is a
similarity score of the two elements a and b, and Wk is the penalty of having a
gap of length k:

Hij = max




Hi−1,j−1 + s(ai, bj),
maxk≥1{Hi−k,j −Wk},
maxl≥1{Hi,j−l −Wl},
0.

(1 ≤ i ≤ m, 1 ≤ j ≤ n)

Finally, it traces back from a cell in H of the highest score to the one with a
score 0, which constitutes the most similar subsequence of s1 and s2.

The time complexity of the classic Smith-Waterman algorithm is O(m2n),
but Gotoh et al. [8] proposed an algorithm of O(m + n) time complexity, and
Myers et al. [24] showed an algorithm of O(n) space complexity. There are also
several linear-time and linear-space sub-optimal algorithms [11], which make lo-
cal sequence alignment even more practical. Furthermore, there are several recent
attempts to leverage GPU to accelerate the Smith-Waterman algorithm [26,28].
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alerts for each IP address, we know what kind of attacks are introduced from
an IP address in which order. Furthermore, assuming that attack payloads sent
from the same IP address are from the same attacker, we can group the logs, and
can potentially figure out similarities between attackers. From our experiments
we found that an attacker tends to use the same set of IP addresses during an
attack campaign even though actual payloads they use may differ. One notable
example is APT, which typically includes multiple stages of independent attacks.

3.2 Align

Align takes in a set of grouped sequences S, and produces a similarity matrix
M , which contains similarity scores for every pair of grouped sequences in S.
The similarity scores are used to visualize the relationship between the sequences
in the next step. To compute M , we focus on local similarity between two se-
quences. Specifically, we first use Smith-Waterman algorithm to compute a local
alignment with the gap penalty Wk = 1, and the similarity score 2 and −2 for
matching and mismatching elements, respectively. In our implementation, we
say two alerts match if they have the same IDS signature.

Since Smith-Waterman returns the most similar subsequence of given two
sequences, we use the subsequence as the measure of similarity. In particular, we
compute the sum of similarity score (in the scoring matrix H) for every element
in the subsequence, and normalize the sum by dividing it by the minimum length
of the two sequences, because the sum may differ significantly based on the length
of the given sequences. Note that any resulting subsequence can only be as long
as the minimum length of the given sequences. Thus, the normalized similarity
should be always less than two, and greater than zero. To make the score be
in the range from zero to one, we further divide the score by two, which is the
maximum similarity score we gave.

For instance, given two sequences s1 = a1, a2, . . . , am and s2 = b1, b2, . . . , bn
where m < n, let us assume that we have obtained the most similar subsequence
s3 = c1, c2, . . . , cl, and the sum of the similarity score for s3 was x. We then
normalize the sum with: x

2m . Each element in the resulting matrix M represents
a normalized similarity score.

3.3 Draw

The final step of AlertVision is to draw a graph based on the similarity matrixM
we computed in the Align phase. Each nodes in the resulting graph represents
a sequence of alerts generated in the Preprocess step. The key challenge here
is to decide where to place each node in a graph because there is no such notion
as position for each of the sequences. To draw a graph based only on the relative
distances between nodes, we leverage force-directed graph drawing [7] discussed
in §2.2. To represent the relationship between nodes, we draw edges only when
two nodes are similar to each other based on our similarity measure. Specifically,
we draw an edge between two nodes when their similarity score is higher than
0.9, i.e., 90%. The algorithm starts by placing every node in random positions

4 Hong et al.

Logs
(L)

Preprocess
(§3.1)

Align
(§3.2)

Draw
(§3.3)

Graph
(G)S M

Fig. 1. Overview of AlertVision.

2.2 Force-Directed Graph

Force-directed graph drawing [7] is an algorithm used for graph layout and vi-
sualization. It takes advantage of the idea of Coulomb’s law and Hooke’s law
to determine the position of nodes. In particular, there are attractive forces be-
tween nodes that are far apart, and are repulsive forces between nodes that are
close to each other. The algorithm moves nodes based on these forces until it
reaches an equilibrium state. We leverage this idea to visually represent security
alerts. Although alert logs typically do not have the notion of coordinates, we
can assign specific positions for each alert based on their relative similarities
with force-directed graph drawing. As a result, we can apply a simple and cheap
clustering algorithm such as k-means clustering to perform a cluster analysis on
alert logs instead of using an expensive one such as hierarchical clustering [33].

3 AlertVision Design

At a high level, AlertVision takes in security logs generated from SIEM systems
and returns a graph that visually correlating security alerts in the logs. Figure 1
shows the overall architecture of AlertVision. AlertVision consists of three major
modules: Preprocess, Align, and Draw. First, Preprocess parses alert logs
L and produces sequences of alerts S. Next, Align finds similar subsequences
from S using a local sequence alignment algorithm, and produces a matrix M
that stores similarity between every pair of S. Finally, Draw returns a graph
where a sequence in S represents a node based on their similarity M .

3.1 Preprocess

AlertVision first preprocesses alert logs L to generate a set of alert sequences S
by grouping alerts based on a specific attack feature. An attack feature includes
a source IP address initiated the attack and a corresponding attack signature.
By grouping alerts based on a feature, we can potentially realize relationship
between feature values. For example, we may be able to realize the similarity
between specific attacks if we visualize alert sequences grouped by their attack
signatures.

In our current implementation, we focus on logs obtained from Network In-
trusion Detection Systems (NIDS). In particular, we focus on source IP addresses
of alert logs. By definition, every entry in NIDS logs contains its source IP ad-
dress, i.e., an IP address that initiated the attack. By collecting a sequence of
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alerts for each IP address, we know what kind of attacks are introduced from
an IP address in which order. Furthermore, assuming that attack payloads sent
from the same IP address are from the same attacker, we can group the logs, and
can potentially figure out similarities between attackers. From our experiments
we found that an attacker tends to use the same set of IP addresses during an
attack campaign even though actual payloads they use may differ. One notable
example is APT, which typically includes multiple stages of independent attacks.

3.2 Align

Align takes in a set of grouped sequences S, and produces a similarity matrix
M , which contains similarity scores for every pair of grouped sequences in S.
The similarity scores are used to visualize the relationship between the sequences
in the next step. To compute M , we focus on local similarity between two se-
quences. Specifically, we first use Smith-Waterman algorithm to compute a local
alignment with the gap penalty Wk = 1, and the similarity score 2 and −2 for
matching and mismatching elements, respectively. In our implementation, we
say two alerts match if they have the same IDS signature.

Since Smith-Waterman returns the most similar subsequence of given two
sequences, we use the subsequence as the measure of similarity. In particular, we
compute the sum of similarity score (in the scoring matrix H) for every element
in the subsequence, and normalize the sum by dividing it by the minimum length
of the two sequences, because the sum may differ significantly based on the length
of the given sequences. Note that any resulting subsequence can only be as long
as the minimum length of the given sequences. Thus, the normalized similarity
should be always less than two, and greater than zero. To make the score be
in the range from zero to one, we further divide the score by two, which is the
maximum similarity score we gave.

For instance, given two sequences s1 = a1, a2, . . . , am and s2 = b1, b2, . . . , bn
where m < n, let us assume that we have obtained the most similar subsequence
s3 = c1, c2, . . . , cl, and the sum of the similarity score for s3 was x. We then
normalize the sum with: x

2m . Each element in the resulting matrix M represents
a normalized similarity score.

3.3 Draw

The final step of AlertVision is to draw a graph based on the similarity matrixM
we computed in the Align phase. Each nodes in the resulting graph represents
a sequence of alerts generated in the Preprocess step. The key challenge here
is to decide where to place each node in a graph because there is no such notion
as position for each of the sequences. To draw a graph based only on the relative
distances between nodes, we leverage force-directed graph drawing [7] discussed
in §2.2. To represent the relationship between nodes, we draw edges only when
two nodes are similar to each other based on our similarity measure. Specifically,
we draw an edge between two nodes when their similarity score is higher than
0.9, i.e., 90%. The algorithm starts by placing every node in random positions
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Fig. 2. Visualization of 6-month alert logs we collected from real-world SIEM devices.

Fig. 3. Visualization of 6-month alert logs with categorization.

the XSS group with the web-based attack group because we found relatively
many attack instances for XSS compared to other web-based attacks. The CVE
exploitation group includes any attacks that are associated with known CVE.
For example, we observed many exploits on Apache Struts in early 2017, which
is associated with CVE-2017-5638.

6 Hong et al.

in a two-dimensional coordinate plane, and terminates when all the nodes are in
an equilibrium state.

4 Evaluation

We now evaluate AlertVision on real-world alert logs obtained from real SIEM
devices. Specifically, we answer the following questions to evaluate our system.

1. Can we observe some meaningful correlation between alert sequences that
are close to each other in a graph generated from AlertVision? (§4.2)

2. How do sequence clusters change over time? Can we see similar clusters over
time? (§4.3)

3. Is there a specific attack incident that we can identify from the generated
graphs? (§4.4)

4.1 Experimental Setup

We collected 6-months (from January to June in 2017) logs from real SIEM de-
vices installed in 85 enterprises, which constitute 5,801,619 alerts for NIDS in
total. There were 96,260 unique source IP addresses used in the alerts excluding
private IP addresses; since one private IP address does not stand for one inde-
pendent attacker, we disregarded private IP addresses. We ran Preprocess to
make a mapping from a source IP to an alert message, which resulted in 96,260
mappings in total. We then removed mappings which have a sequence of only a
single alert. Note that such a short sequence cannot affect the result of Smith-
Waterman algorithm and removing them can help reduce overhead of Align. As
a result, we obtained 29,268 unique attack sequences in total. In the rest of this
section, we discuss our research questions based on the results of Preprocess.

4.2 Alert Sequence Correlation

We ran Align and Draw on the sequences obtained in §4.1. Figure 2 presents
six graphs we obtained by running AlertVision on monthly logs from Jan. 2017
to Jun. 2017. Each node (dot) in the graphs represents a sequence, i.e., a group of
alerts. The graphs clearly show which sequences are similar to each other: we can
easily recognize clusters of nodes from the graphs. We found that each cluster in
the graphs contain similar attack sequences. For example, SQL injection attacks
formed a large cluster in each of the graphs, and several web-based attacks such
as XSS and XPATH injection formed multiple clusters that were close to each
other. To further analyze the correlation between the alerts, we grouped the
nodes based on their attack characteristics.

Particularly, there were 504 unique attack signatures in our dataset, and we
manually categorized them into six categories based on their attack character-
istics: (1) SQL injection, (2) vulnerability scanning, (3) XSS, (4) SSH password
guessing, (5) web-based attacks, and (6) known CVE exploitation. We separated
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Fig. 2. Visualization of 6-month alert logs we collected from real-world SIEM devices.

Fig. 3. Visualization of 6-month alert logs with categorization.

the XSS group with the web-based attack group because we found relatively
many attack instances for XSS compared to other web-based attacks. The CVE
exploitation group includes any attacks that are associated with known CVE.
For example, we observed many exploits on Apache Struts in early 2017, which
is associated with CVE-2017-5638.
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Fig. 4. C&C servers are clustered.
Fig. 5. Botnet bots are clustered.

are close the identified bots may be other bots controlled by the same botnet
master as their behaviors are the same as the identified bots.

5 Related Work

Leveraging data mining and big data analytics for security has a long history. For
instance, behavior-based anomaly detection [6, 18] is a powerful defense mech-
anism that is still being used today. However, such techniques only focus on
detecting attack instances, but not on identifying and analyzing the actors of
the attacks.

Many researchers have recently turned their attention to refining security
data obtained from various sources to build TI and to understand the mean-
ing of threat instances due to recent advances in security threats. There are
currently several attempts to classify threats [5, 13, 16, 21, 35, 39] by leveraging
ontology formally defined for describing security threats [5]. Although effective,
those approaches are largely manual. Several attempts to defining data struc-
tures for TI have been made too. STIX [1] provides a unified way for expressing
TI. Qamar et al. [29] recently extends STIX to represent semantics and con-
textual information of TI. Kapetanakis et al. [14] leverage traces on the victim
machines left by attackers, e.g., modified/deleted files or registry entries, in order
to generate attacker profiles. However, collecting such information is not feasi-
ble in practice as it requires installing host-based logging application for every
machine, which may raise privacy concerns. On the other hand, our approach
only uses the existing SIEM events in order to generate profiles. Furthermore,
our system visualizes the relevance between security alerts, which can provide
valuable insight for the TI analysts. Note that AlertVision presents a unique
design point in mining useful knowledge from security alerts with visualization.
Therefore, our technique is complementary to the existing works.

There have been a wide range of research on correlating similar SIEM events,
which is often called, alert correlation [20, 31, 40]. Alert correlation techniques
are used to detect botnets [9, 17] as well as to discover attack patterns from
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Table 1. Attack reuse rate for each attack type based on the nodes in Jan. 2017.

Attack Type Feb. Mar. Apr. May. Jun.

SQL Injection 16.5% 11.6% 7.3% 5.6% 4.3%
Vulnerability Scanning 63.8% 62.7% 70.4% 51.9% 54.4%
XSS 30.5% 27.2% 37.3% 27.8% 17.0%
SSH Brute-Forcing 19.8% 8.4% 5.5% 3.2% 1.9%
Web-based Attacks 30.2% 15.1% 9.3% 11.2% 12.0%
CVE exploitation 18.8% 18.8% 18.8% 12.5% 6.3%

Figure 3 shows nodes in each of the groups in different colors. It is obvious
from the graphs that our automated graph visualization algorithm was able to
cluster attack sequences into meaningful clusters.

4.3 Attacks over Time

Do clustered sequences in our graphs change over time? We found that the same
IP addresses tend to perform distinct attacks over time. For example, 83% of
nodes that performed XSS in Jan. 2017 used different attack vectors other than
XSS in Jun. 2017. Table 1 summarizes the attack reuse rate, which is the rate
between the number of nodes that reuse the same attack type and the total
number of nodes, for each attack type we consider. We computed the reuse rate
based on the nodes in the graph of Jan. 2017. For example, only 4.3% of the
nodes used for SQL injection in Jan. 2017 were used for SQL injection again in
Jun. 2017. Notably, over 50% of the vulnerability scanners were using the same
IP addresses over time.

We note that we can easily identify such a change by analyzing graphs with
AlertVision, because we can easily highlight specific nodes when drawing graphs.
Furthermore, the current implementation of AlertVision provides a graphical
user interface that allows analysts to click nodes in the graph to see detailed
information about them.

4.4 TI Case Study

Does the information that we obtained from AlertVision match with existing
threat intelligence? To answer this question, we checked if any of the attackers’
IP addresses in our dataset are listed in the IBM X-Force TI service [12]. We
found that several known IP addresses for attackers in the TI were indeed in the
same group in our graphs. Figure 4 and Figure 5 show that known command-
and-control (C&C) servers and botnet addresses from the TI were in the same
group in the graphs, respectively. Both figures illustrate a case for Jan. 2017,
but the same trend appears in other graphs.

This result signifies the value of AlertVision as a tool that helps analysts
understand the meaning of the attacks. For example, the IBM TI shows some of
the nodes in our graphs are identified as a bot, but other nodes in the graph that
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Fig. 4. C&C servers are clustered.
Fig. 5. Botnet bots are clustered.

are close the identified bots may be other bots controlled by the same botnet
master as their behaviors are the same as the identified bots.

5 Related Work

Leveraging data mining and big data analytics for security has a long history. For
instance, behavior-based anomaly detection [6, 18] is a powerful defense mech-
anism that is still being used today. However, such techniques only focus on
detecting attack instances, but not on identifying and analyzing the actors of
the attacks.

Many researchers have recently turned their attention to refining security
data obtained from various sources to build TI and to understand the mean-
ing of threat instances due to recent advances in security threats. There are
currently several attempts to classify threats [5, 13, 16, 21, 35, 39] by leveraging
ontology formally defined for describing security threats [5]. Although effective,
those approaches are largely manual. Several attempts to defining data struc-
tures for TI have been made too. STIX [1] provides a unified way for expressing
TI. Qamar et al. [29] recently extends STIX to represent semantics and con-
textual information of TI. Kapetanakis et al. [14] leverage traces on the victim
machines left by attackers, e.g., modified/deleted files or registry entries, in order
to generate attacker profiles. However, collecting such information is not feasi-
ble in practice as it requires installing host-based logging application for every
machine, which may raise privacy concerns. On the other hand, our approach
only uses the existing SIEM events in order to generate profiles. Furthermore,
our system visualizes the relevance between security alerts, which can provide
valuable insight for the TI analysts. Note that AlertVision presents a unique
design point in mining useful knowledge from security alerts with visualization.
Therefore, our technique is complementary to the existing works.

There have been a wide range of research on correlating similar SIEM events,
which is often called, alert correlation [20, 31, 40]. Alert correlation techniques
are used to detect botnets [9, 17] as well as to discover attack patterns from
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alert logs [4, 23, 30, 32, 38]. Ours is in the same line of research, but our focus is
not on correlating attack instances themselves, but on visually representing the
similarity between attack sources.

Visualizing security alerts has been studied by several researchers, but they
mostly focus on how to graphically representing the raw data itself, but not on
visualizing the meaning of them. Some of them can only be applied to specific
attack types such as Worm [10] and DoS attacks [22]. Livnat et al. [19] propose
a general method for representing alerts based on their detection time and their
location in a network topology, but it does not capture the correlation between
those alerts.

6 Conclusion

In this paper, we presented a novel visualization technique for providing practical
insights for security analysts. We applied our technique on a large-scale dataset
obtained from real enterprise networks, and showed its effectiveness in terms of
understanding attacks and extracting TI from alert logs. The proposed technique
is indeed used internally now in AhnLab, Korea.
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31. Salah, S., Maciá-Fernández, G., Dı́Az-Verdejo, J.E.: A model-based survey of alert
correlation techniques. Computer Networks 57(5), 1289–1317 (2013)

32. Shittu, R., Healing, A., Ghanea-Hercock, R., Bloomfield, R., Rajarajan, M.: In-
trusion alert prioritisation and attack detection using post-correlation analysis.
Computers and Security 50, 1–15 (2015)

33. Sibson, R.: SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal 16(1), 30–34 (1973)

34. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of Molecular Biology 147(1), 195–197 (1981)

35. Spring, J., Kern, S., Summers, A.: Global adversarial capability modeling. In:
Proceedings of the IEEE eCrime Researchers Summit on Anti-Phishing Working
Group. pp. 1–21 (2015)

36. Strasburg, C., Basu, S., Wong, J.S.: S-MAIDS: A semantic model for automated
tuning, correlation, and response selection in intrusion detection systems. In: Pro-
ceedings of the IEEE International Conference on Computer Software and Appli-
cations Conference. pp. 319–328 (2013)

37. Tankard, C.: Advanced persistent threats and how to monitor and deter them.
Network Security 2011(8), 16–19 (2011)

38. Treinen, J.J., Thurimella, R.: A framework for the application of association rule
mining in large intrusion detection infrastructures. In: Proceedings of the Iterna-
tional Workshop on the Recent Advances in Intrusion Detection. pp. 1–18 (2006)
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Abstract. A secure comparison protocol computes a comparison result
between private information from inputs without leakage of the informa-
tion. It is a very important factor in many potential applications such
as secure multi-party computation. These protocols under Yao’s Million-
aires’ Problem output a plaintext of a comparison result. Because of this
feature, however, these protocols are not suitable for some applications
such as secure biometrics, secure statistics and so on. From this con-
cern, we focus on a secure comparison protocol whose output is one bit
encrypted comparison result. In recent works, the computation of such
protocols proceeds bit-by-bit. For this reason, these protocols still have
a problem about the efficiency. In this paper, as a first step of our study,
we propose two secure comparison protocols with encrypted output. As
an interesting feature, the computation of one of our protocols proceeds
2 bits-by-2 bits. We prove the correctness of our protocols and estimate
the computational cost. Moreover we discuss the security of our protocols
against semi-honest model.

Keywords: Homomorphic encryption · Privacy · Secure comparison · Secure
multi-party computation · Semi-honest model · Yao’s Millionaires’ Problem.

1 Introduction

A secure comparison protocol computes a comparison result between private in-
formation from inputs without leakage of any private information. It is a very
important factor in many potential applications such as secure multi-party com-
putation.

In 1982, Yao proposed a secure comparison protocol and suggested Yao’s Mil-
lionaires’ Problem [21]. Yao’s Millionaires’ Problem is as follows: “Alice and Bob
have non-negative integers a and b which are private information, respectively.
Alice would like to know the comparison result (a ≤ b). How can Alice get a
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eral building blocks may makes secure comparison protocols more secure. Hence
BRC protocols may outperform IRC protocols in terms of security.

Therefore we focus on a comparison protocol which the computation of the
protocol proceeds w bits-by-w bits for a non-negative integer w. Namely, given
l-bit non-negative integers a and b, the computation of the protocol proceeds w
bits-by-w bits to compute the comparison result. We expect that computing w
bits-by-w bits makes the comparison protocol more efficient. Moreover we expect
that this protocol can be based on several building blocks such as BRC protocols.
As a interesting feature, since this protocol proceeds w bits-by-w bits against
l-bit input integers, we can treat large integers as the inputs of the protocol.

The goals of our study are follows: it is to develop a comparison protocol
which the computation proceeds w bits-by-w bits for any non-negative w. Fur-
thermore it is to discuss a suitable number of the bits in terms of both the
efficiency and the security. This development means a generalization of a secure
comparison protocols we propose in this paper.

As a first step for the generalization, we propose two comparison protocols
whose output is one bit encrypted comparison result. Our first proposed protocol
is a modification of Veugen’s protocol [19, Protocol 2]. The computation of our
first protocol and Veugen’s one proceeds bit-by-bit. This modification makes
an initialization of our first protocol simpler than Veugen’s one. Moreover our
second proposed protocol is based on our first protocol. The computation of this
protocol proceeds 2 bits-by-2 bits.

1.2 Advantages of our protocols

Our first protocol is a first secure comparison protocol using only homomorphic
encryption and outputting an encrypted bit of a comparison result (a > b).
Compared to a security of protocols using several building blocks, a security of
the protocol using only one building block can be analyzed more easily. In addi-
tion a secure comparison protocol with an encrypted bit of a comparison result
(a > b) and using only homomorphic encryption still has been not proposed.
This fact leads us to design our first proposed protocol. This protocol has po-
tential for some application such as biometrics, statistics and so on. For example
our first protocol can be applied for a secure division protocol [20, Protocol 1]
and a secure comparison protocol [20, Protocol 4]. Moreover our first protocol
has simpler algorithm than that of Veugen’s one. This modification leads us to
develop our proposed protocol 2.

Our second protocol proceeds 2 bits-by-2 bits to compute the comparison
result. As a interesting feature, since this protocol proceeds 2 bits-by-2 bits
against l-bit input integers, we can treat large integers as the inputs of the pro-
tocol. Moreover this second protocol is a first step for the generalization. We
expect that the generalization leads us to develop more efficient secure compar-
ison protocols.

2 Takumi Kobayashi and Keisuke Hakuta

plaintext of the comparison result without leakage of any information about their
private information?”. Many researchers have tried developing an outperform
protocol under Yao’s Millionaires’ Problem for a long term. Secure comparison
protocols under Yao’s Millionaires’ Problem could be used to many potential ap-
plications. The examples of applications include: secure online-auction [5], [14],
secure biometrics [1], secure statistics, privacy preserving data mining [2], [18]
and so on [21]. However some applications in secure multi-party computation
need a secure comparison protocol whose output is one bit encrypted compari-
son result as a subprotocol. Since a protocol under Yao’s Millionaires’ Problem
outputs a plaintext of the comparison result, this protocol is not suitable for
some applications such as secure biometrics [8], [16] and secure statistics [9] and
so on.

Motivated by the above concern, we focus on a secure comparison protocol
whose output is one bit encrypted comparison result. The protocol outputs a
ciphertext of a comparison result (a ≤ b) from Alice’s input a and Bob’s input
b. There appears to be only a few publications in the literature which consider
an encrypted output for integer comparison. We introduce some recent works in
next subsection.

1.1 Recent works

Several researchers proposed secure comparison protocols with an encrypted out-
put and based on several building blocks. Note that a notion “(a ≤ b)” stands
for a truth value of a proposition “a ≤ b” for non-negative integers a and b
and other cases are defined similarly. For example, if a ≤ b is truth then a ci-
phertext of a comparison result (a ≤ b) is equal to that of “1”. Damg̊ard et al.
proposed a comparison protocol with an encrypted output based on secret shar-
ing [4–6]. Moreover Garay et al. proposed one with a ciphertext of a comparison
result (a > b) [12] using conditional gate [17]. More recently, some works using
somewhat homomorphic encryption are proposed by Cheon et al. (cf. [3]). Their
protocol outputs a ciphertext of a comparison result (a < b). In addition, Veugen
proposed a secure comparison protocol with a ciphertext of a comparison result
(a < b) using homomorphic encryption [19, Protocol 2]. Thus many comparison
protocols have developed with several building blocks.

Secure comparison protocols are mainly classified as the following two pro-
tocols. Since the computation of some protocols proceeds bitwise in order to
compute the comparison result, many comparison protocols still have a problem
about the efficiency. In this paper, we call such a comparison protocol a BRC
(Binary Representation Comparison) protocol, for short. On the other hand,
the computation of some protocols proceeds an input size-by-an input size. We
call such a comparison protocol an IRC (Integer Representation Comparison)
protocol in this paper, for short. Each IRC protocol requires only a few rounds
to compute the result [20, Protocol 4]. For this reason, an IRC protocol can be
more efficient than a BRC protocol. However, compared to BRC protocols, a
few IRC protocols with several building blocks have been proposed. Using sev-
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eral building blocks may makes secure comparison protocols more secure. Hence
BRC protocols may outperform IRC protocols in terms of security.

Therefore we focus on a comparison protocol which the computation of the
protocol proceeds w bits-by-w bits for a non-negative integer w. Namely, given
l-bit non-negative integers a and b, the computation of the protocol proceeds w
bits-by-w bits to compute the comparison result. We expect that computing w
bits-by-w bits makes the comparison protocol more efficient. Moreover we expect
that this protocol can be based on several building blocks such as BRC protocols.
As a interesting feature, since this protocol proceeds w bits-by-w bits against
l-bit input integers, we can treat large integers as the inputs of the protocol.

The goals of our study are follows: it is to develop a comparison protocol
which the computation proceeds w bits-by-w bits for any non-negative w. Fur-
thermore it is to discuss a suitable number of the bits in terms of both the
efficiency and the security. This development means a generalization of a secure
comparison protocols we propose in this paper.

As a first step for the generalization, we propose two comparison protocols
whose output is one bit encrypted comparison result. Our first proposed protocol
is a modification of Veugen’s protocol [19, Protocol 2]. The computation of our
first protocol and Veugen’s one proceeds bit-by-bit. This modification makes
an initialization of our first protocol simpler than Veugen’s one. Moreover our
second proposed protocol is based on our first protocol. The computation of this
protocol proceeds 2 bits-by-2 bits.

1.2 Advantages of our protocols

Our first protocol is a first secure comparison protocol using only homomorphic
encryption and outputting an encrypted bit of a comparison result (a > b).
Compared to a security of protocols using several building blocks, a security of
the protocol using only one building block can be analyzed more easily. In addi-
tion a secure comparison protocol with an encrypted bit of a comparison result
(a > b) and using only homomorphic encryption still has been not proposed.
This fact leads us to design our first proposed protocol. This protocol has po-
tential for some application such as biometrics, statistics and so on. For example
our first protocol can be applied for a secure division protocol [20, Protocol 1]
and a secure comparison protocol [20, Protocol 4]. Moreover our first protocol
has simpler algorithm than that of Veugen’s one. This modification leads us to
develop our proposed protocol 2.

Our second protocol proceeds 2 bits-by-2 bits to compute the comparison
result. As a interesting feature, since this protocol proceeds 2 bits-by-2 bits
against l-bit input integers, we can treat large integers as the inputs of the pro-
tocol. Moreover this second protocol is a first step for the generalization. We
expect that the generalization leads us to develop more efficient secure compar-
ison protocols.
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integer n ≥ 2, we denote the residue class ring modulo n by Zn := Z/nZ. Let
p and q be (k/2)-bit primes which are chosen uniformly at random. We assume
that N = p× q is a k-bit RSA modulus. As well with Zn, we denote the residue
class ring modulo N and N2 by ZN = Z/NZ and ZN2 = Z/N2Z, respectively.
We represent a set {a ∈ Z/N2Z | gcd(a,N2) = 1} by Z∗

N2 .
We refer the reader to [11, Definition 7.1] for the definition of a public key

encryption scheme. We let κ be a security parameter of the scheme E . A pair
(pk, sk) which is an output of Gen(1κ) constitutes a pair of corresponding public
key pk and secret key sk. We represent the public key space, the secret key space,
the plaintext space and the ciphertext space by PK, SK, P and C, respectively.

Encpk(m) is the ciphertext of the plaintextm ∈ P using pk, whereas Decsk(c)
is the decrypting result of the ciphertext c ∈ C using sk. In this paper, two maps
Enc and Dec are defined as follows:

Enc : P × PK → C Dec : C × SK → P
(m, pk) �→ c , (c, sk) �→ m .

We refer the reader to [11, Definition 7.1] for the details.

2.1 Homomorphic encryption

For our proposed protocols we need an additive and semantically secure homo-
morphic encryption scheme. A homomorphic encryption scheme and an additive
homomorphic encryption scheme are defined as follows:

Definition 1. (Homomorphic Encryption [10, Definition 23.3.1])
A public key encryption scheme with message space P and ciphertext space C is
said to be homomorphic for the group P if there is some efficiently computable
binary operation ⊥1 on C and ⊥2 on P such that, for all m1,m2 ∈ P, if c1 is
a ciphertext of m1 and c2 is a ciphertext of m2 (both with respect to the same
public key) then c1 ⊥1 c2 is a ciphertext of m1 ⊥2 m2.

In Definition 1, if the binary operation ⊥2 is represented by the addition +,
the public key encryption scheme is called an additive homomorphic encryption.
One can apply any additive homomorphic encryption schemes to our protocols,
such as Paillier encryption scheme [15], Damgard-Jurik encryption scheme [7]
and DGK (Damg̊ard, Geisler and Krøig̊ard) encryption scheme [5], [6]. In par-
ticular Paillier encryption scheme [15] is used for our proposed protocols in this
paper. From homomorphic property, we have

Encpk(m
−1) = Encpk(−m) for m ∈ P.

Furthermore a multiplication operation between ciphertexts is denoted by “·”.

2.2 Paillier encryption scheme

Paillier encryption scheme [15] is an additive homomorphic encryption scheme
which is commonly used. We describe Paillier encryption scheme (Key Gener-
ation, Encryption and Decryption) as follows: note that λ = lcm(p − 1, q − 1),
a− 1 ≡ 0 mod N for any a ∈ ZN2 [15, Theorem 9] and a map L is defined as

4 Takumi Kobayashi and Keisuke Hakuta

1.3 Our contribution

We consider a following scenario in this paper. “Alice and Bob have private in-
tegers a and b, respectively. They would like to compare their integers securely,
but, they would not like to reveal the comparison result. Now Alice encrypts
her messages using Bob’s public key while Bob has the public key and its corre-
sponding secret key. Then Alice only obtains an encrypted bit of the comparison
result (a > b).” In other words, “Alice and Bob input private integers a and b.
As a result, Alice outputs a ciphertext of the comparison result (a > b) with-
out leaking any information about private integers each other.” We have two
interesting contributions as follows.

1. We first propose a new comparison protocol whose output is one bit en-
crypted comparison result. Our first protocol is described as proposed pro-
tocol 1 in Section 3. Our first protocol and Veugen’s one proceeds bit-by-bit
to compute the comparison result. This protocol is a modification of Veugen’s
protocol [19, Protocol 2] and has simpler algorithm than that of Veugen’s
one. This modification leads us to develop our proposed protocol 2.

2. We secondly propose another comparison protocol whose output is one bit
encrypted comparison result. Our second protocol is described as proposed
protocol 2 in Section 4. Our second protocol is a modification of our first
protocol. Our first protocol and some comparison protocols in recent works
proceed bit-by-bit, on the other hand, our second protocol proceeds 2 bits-by-
2 bits to compute the comparison result. In order to compute the comparison
result, our second protocol needs a secure division protocol [20, Protocol 1]
which needs a secure comparison protocol. Since an input size of the secure
comparison protocol in the division protocol is enough small, the subprotocol
in the division protocol is quite efficient. We describe the computational cost
of our second protocol in Section 4.3. This second protocol is a first step for
the generalization.

In Section 2 mathematical preliminaries are described, such as notation and
Paillier encryption scheme [15] which is a common homomorphic encryption
scheme. In Section 3 we propose a secure comparison protocol which is a mod-
ification of Veugen’s protocol [19, Protocol 2]. Moreover we briefly discuss the
correctness, computational cost and security. Here, the term “correctness” indi-
cates that the protocol properly works to compute the outputs from the inputs.
In Section 4 we propose a secure comparison protocol with the computation
proceeds 2 bits-by-2 bits and prove the correctness of the protocol. Furthermore
we estimate the computational cost and discuss the security. In Section 5 we
conclude the paper by summary and future works.

2 Mathematical preliminaries

We use the symbol Z to represent the rational integers. Let us denote by Z≥0

the set of non-negative integers, namely, Z≥0 := {n ∈ Z | n ≥ 0}. For a positive
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integer n ≥ 2, we denote the residue class ring modulo n by Zn := Z/nZ. Let
p and q be (k/2)-bit primes which are chosen uniformly at random. We assume
that N = p× q is a k-bit RSA modulus. As well with Zn, we denote the residue
class ring modulo N and N2 by ZN = Z/NZ and ZN2 = Z/N2Z, respectively.
We represent a set {a ∈ Z/N2Z | gcd(a,N2) = 1} by Z∗

N2 .
We refer the reader to [11, Definition 7.1] for the definition of a public key

encryption scheme. We let κ be a security parameter of the scheme E . A pair
(pk, sk) which is an output of Gen(1κ) constitutes a pair of corresponding public
key pk and secret key sk. We represent the public key space, the secret key space,
the plaintext space and the ciphertext space by PK, SK, P and C, respectively.

Encpk(m) is the ciphertext of the plaintextm ∈ P using pk, whereas Decsk(c)
is the decrypting result of the ciphertext c ∈ C using sk. In this paper, two maps
Enc and Dec are defined as follows:

Enc : P × PK → C Dec : C × SK → P
(m, pk) �→ c , (c, sk) �→ m .

We refer the reader to [11, Definition 7.1] for the details.

2.1 Homomorphic encryption

For our proposed protocols we need an additive and semantically secure homo-
morphic encryption scheme. A homomorphic encryption scheme and an additive
homomorphic encryption scheme are defined as follows:

Definition 1. (Homomorphic Encryption [10, Definition 23.3.1])
A public key encryption scheme with message space P and ciphertext space C is
said to be homomorphic for the group P if there is some efficiently computable
binary operation ⊥1 on C and ⊥2 on P such that, for all m1,m2 ∈ P, if c1 is
a ciphertext of m1 and c2 is a ciphertext of m2 (both with respect to the same
public key) then c1 ⊥1 c2 is a ciphertext of m1 ⊥2 m2.

In Definition 1, if the binary operation ⊥2 is represented by the addition +,
the public key encryption scheme is called an additive homomorphic encryption.
One can apply any additive homomorphic encryption schemes to our protocols,
such as Paillier encryption scheme [15], Damgard-Jurik encryption scheme [7]
and DGK (Damg̊ard, Geisler and Krøig̊ard) encryption scheme [5], [6]. In par-
ticular Paillier encryption scheme [15] is used for our proposed protocols in this
paper. From homomorphic property, we have

Encpk(m
−1) = Encpk(−m) for m ∈ P.

Furthermore a multiplication operation between ciphertexts is denoted by “·”.

2.2 Paillier encryption scheme

Paillier encryption scheme [15] is an additive homomorphic encryption scheme
which is commonly used. We describe Paillier encryption scheme (Key Gener-
ation, Encryption and Decryption) as follows: note that λ = lcm(p − 1, q − 1),
a− 1 ≡ 0 mod N for any a ∈ ZN2 [15, Theorem 9] and a map L is defined as
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Table 1. Variables in one iteration

ci ai bi si ui after step 19 ui after step 24 ti+1

0 0 0 si ← ti ui ←0 ui ← 0 ti+1 ← ti + bi − ui = ti
0 0 1 si ← ti ui ←ti ui ← ti ti+1 ← ti + bi − ui = 1
0 1 0 si ← ti ui ←0 ui ← 0 ti+1 ← ui = 0
0 1 1 si ← ti ui ←ti ui ← ti ti+1 ← ui = ti
1 0 0 si ← 1− ti ui ←0 ui ← bi − ui = 0 ti+1 ← ti + bi − ui = ti
1 0 1 si ← 1− ti ui ←1− ti ui ← bi − ui = ti ti+1 ← ti + bi − ui = 1
1 1 0 si ← 1− ti ui ←0 ui ← bi − ui = 0 ti+1 ← ui = 0
1 1 1 si ← 1− ti ui ←1− ti ui ← bi − ui = ti ti+1 ← ui = ti

3.1 Description of our protocol 1 and its correctness

Our proposed protocol 1 is described as Algorithm 1. Our protocol 1 is a mod-
ification of Veugen’s comparison protocol [19, Protocol 2]. Our protocol 1 and
Veugen’s one proceed bit-by-bit to compute the comparison result. Veugen’s one
outputs one bit encrypted comparison result (a < b). On the other hand our
protocol 1 outputs one bit encrypted comparison result (a > b).

Set a(i) := (ai−1, . . . , a0)2 ∈ Z≥0 and b(i) := (bi−1, . . . , b0)2 ∈ Z≥0 for each i
(1 ≤ i ≤ l). Moreover we put ti := F(a(i), b(i)) for i = 1, . . . , l. Remark that

tl = F(a(l), b(l)) = F(a, b).

In our proposed protocol 1 the value ti+1 is computed for each i (i = 0, 1, . . . , l−
1). The goal of our proposed protocol 1 is that Alice outputs a ciphertext of
tl = 1 − tl = 1 − F(a(l), b(l)) = 1 − F(a, b) = F̂(a, b) from their inputs a and
b. This is achieved by computing tl = F(a(l), b(l)) = F(a, b) and F̂(a, b) =
1−F(a, b) = 1− tl.

Our protocol 1 differs from Veugen’s one in the following steps: (i) Initializa-
tion step, (ii) Randomization step, and (iii) Bit inverting step. In Initialization
step, Alice encrypts a message “1”, obtains Encpk(1), and substitutes Encpk(1)
in Encpk(t0). Furthermore Alice and Bob carry out iterations for i from 0 to
l − 1 by +1. We alter steps 1–6 in Veugen’s one to this step. In Randomization
step, Bob chooses r′ from random set at random and computes (r′)N . More-
over Bob randomizes Encpk(ui) by computing Encpk(ui) × (r′)N . We add this
step between steps 22 and 23 in Veugen’s one. In Bit inverting step, Alice com-
putes Encpk(1) ·Encpk(ti)−1, substitutes Encpk(1− ti) in Encpk(ti) and outputs
Encpk(ti). We add this step after step 38 of Veugen’s one.

Furthermore we describe that how variables change in one iteration in pro-
posed protocol 1 as Table 1. From Table 1, clearly, Alice obtains a ciphertext
of tl = F(a, b) in step 31. By bit inverse in steps 32–33, Alice finally obtains a
ciphertext of F̂(a, b). Thus we can see that our protocol 1 satisfies the correct-
ness. Since the correctness of our protocol 1 is similar to that of Veugen’s one
we refer the reader to [19] for more details.

3.2 Computational cost and security of our protocol 1

Note that Enc, M , I, and Exp stand for the computational cost of one encryp-
tion, multiplication, inverse, and exponent, respectively. Our protocol 1 needs

6 Takumi Kobayashi and Keisuke Hakuta

L : ZN2 → ZN

a �→ (a− 1)/N .

1. Key Generation: Set a RSA modulus N = p × q where p and q are large
prime numbers at random. Choose g ∈ Z∗

N2 at random. Check that g is a
generator of Z∗

N2 by confirm whether gcd(L(gλ mod N2), N) = 1. If g is a
generator of Z∗

N2 , the public key is (N , g) and the secret key is (p, q).
2. Encryption: Given a message m ∈ ZN , select a random number r ∈ Z∗

N .

The ciphertext of the message m is c = Encpk(m, r) = gmrN mod N2.
3. Decryption: Given a ciphertext c ∈ Z∗

N2 , compute the following equation:

m = (L(cλ mod N2)/L(gλ mod N2)) mod N.

Clearly, if c = Encpk(m, r), we obtain an original message m. We refer the
reader to [15] for more details. We can see from below, Paillier encryption
scheme is an additive homomorphic encryption scheme.

4. Homomorphic property: Given two messages m1 and m2 ∈ ZN , choose ran-
dom numbers r1, r2 ∈ Z∗

N . We represent two ciphertexts c1 = Encpk(m1, r1)
= gm1rN1 mod N2, c2 = Encpk(m2, r2) = gm2rN2 mod N2. Then we have

c1 · c2 = Encpk(m1, r1) · Encpk(m2, r2)

= (gm1rN1 mod N2)× (gm2rN2 mod N2)

= (g(m1+m2))× (r1r2)
N mod N2

= Encpk(m1 +m2, r1r2). (1)

3 Proposed Protocol 1

In this section we propose a comparison protocol whose output is one bit en-
crypted comparison result (a > b). We use two maps F and F̂ throughout the
paper. The two maps F and F̂ return a comparison result against input integers
and are defined as follows. We define the map F : Z2

≥0 → {0, 1} as

F(x, y) =

{
0 (x > y),

1 (x ≤ y),
(2)

and define the map F̂ : Z2
≥0 → {0, 1} as F̂(x, y) = F(x, y)⊕ 1, where “⊕” is the

exclusive-or operation.
Moreover we assume that Alice has a l-bit non-negative integer a and Bob

has a l-bit non-negative integer b as follows:

a =
∑l−1

i=0 ai2
i = (al−1, . . . , a0)2 ∈ Z≥0, ai ∈ {0, 1},

b =
∑l−1

i=0 bi2
i = (bl−1, . . . , b0)2 ∈ Z≥0, bi ∈ {0, 1}.
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Table 1. Variables in one iteration

ci ai bi si ui after step 19 ui after step 24 ti+1

0 0 0 si ← ti ui ←0 ui ← 0 ti+1 ← ti + bi − ui = ti
0 0 1 si ← ti ui ←ti ui ← ti ti+1 ← ti + bi − ui = 1
0 1 0 si ← ti ui ←0 ui ← 0 ti+1 ← ui = 0
0 1 1 si ← ti ui ←ti ui ← ti ti+1 ← ui = ti
1 0 0 si ← 1− ti ui ←0 ui ← bi − ui = 0 ti+1 ← ti + bi − ui = ti
1 0 1 si ← 1− ti ui ←1− ti ui ← bi − ui = ti ti+1 ← ti + bi − ui = 1
1 1 0 si ← 1− ti ui ←0 ui ← bi − ui = 0 ti+1 ← ui = 0
1 1 1 si ← 1− ti ui ←1− ti ui ← bi − ui = ti ti+1 ← ui = ti

3.1 Description of our protocol 1 and its correctness

Our proposed protocol 1 is described as Algorithm 1. Our protocol 1 is a mod-
ification of Veugen’s comparison protocol [19, Protocol 2]. Our protocol 1 and
Veugen’s one proceed bit-by-bit to compute the comparison result. Veugen’s one
outputs one bit encrypted comparison result (a < b). On the other hand our
protocol 1 outputs one bit encrypted comparison result (a > b).

Set a(i) := (ai−1, . . . , a0)2 ∈ Z≥0 and b(i) := (bi−1, . . . , b0)2 ∈ Z≥0 for each i
(1 ≤ i ≤ l). Moreover we put ti := F(a(i), b(i)) for i = 1, . . . , l. Remark that

tl = F(a(l), b(l)) = F(a, b).

In our proposed protocol 1 the value ti+1 is computed for each i (i = 0, 1, . . . , l−
1). The goal of our proposed protocol 1 is that Alice outputs a ciphertext of
tl = 1 − tl = 1 − F(a(l), b(l)) = 1 − F(a, b) = F̂(a, b) from their inputs a and
b. This is achieved by computing tl = F(a(l), b(l)) = F(a, b) and F̂(a, b) =
1−F(a, b) = 1− tl.

Our protocol 1 differs from Veugen’s one in the following steps: (i) Initializa-
tion step, (ii) Randomization step, and (iii) Bit inverting step. In Initialization
step, Alice encrypts a message “1”, obtains Encpk(1), and substitutes Encpk(1)
in Encpk(t0). Furthermore Alice and Bob carry out iterations for i from 0 to
l − 1 by +1. We alter steps 1–6 in Veugen’s one to this step. In Randomization
step, Bob chooses r′ from random set at random and computes (r′)N . More-
over Bob randomizes Encpk(ui) by computing Encpk(ui) × (r′)N . We add this
step between steps 22 and 23 in Veugen’s one. In Bit inverting step, Alice com-
putes Encpk(1) ·Encpk(ti)−1, substitutes Encpk(1− ti) in Encpk(ti) and outputs
Encpk(ti). We add this step after step 38 of Veugen’s one.

Furthermore we describe that how variables change in one iteration in pro-
posed protocol 1 as Table 1. From Table 1, clearly, Alice obtains a ciphertext
of tl = F(a, b) in step 31. By bit inverse in steps 32–33, Alice finally obtains a
ciphertext of F̂(a, b). Thus we can see that our protocol 1 satisfies the correct-
ness. Since the correctness of our protocol 1 is similar to that of Veugen’s one
we refer the reader to [19] for more details.

3.2 Computational cost and security of our protocol 1

Note that Enc, M , I, and Exp stand for the computational cost of one encryp-
tion, multiplication, inverse, and exponent, respectively. Our protocol 1 needs
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more 1 Enc, 0.5l + 3 M , 2.5 I, and 0.5l Exp more than Veugen’s protocol on
average. While Veugen’s protocol carries out (l−1) iterations, our proposed pro-
tocol 1 carries out l iterations. Since we can guess that the input size l is enough
large, our protocol 1 and Veugen’s one have almost the same computation cost.
Our protocol 1 has a following computational cost on average: Alice’s Enc, M ,
I, and Exp are 1, 2l + 1, 1.5l + 1, and 0. Bob’s Enc, M , I, and Exp are 1.5l,
0.5l, 0, and 0.5l. Furthermore Total Enc, M , I, and Exp are 1.5l + 1, 2.5l + 1,
1.5l + 1, and 0.5l. We refer the reader to [19] for more details.

We briefly discuss the security of our proposed protocol 1. Our security anal-
ysis is similar to Veugen’s one [19]. Differences of our protocol 1 from Veugen’s
one are Initialization step, Randomization step and Bit inverting step. In Initial-
ization step, Alice and Bob do not communicate ciphertexts. In Randomization
step, Bob randomizes a ciphertext of si depending on bi. Finally, in Bit inverting
step, Alice just carry out bit inverse. Consequently our modification does not
affect the security of Veugen’s one. In addition, Veugen’s one is secure against
semi-honest model [19, Section 2.3]. We can see that our proposed protocol 1 is
also secure against semi-honest model.

4 Proposed Protocol 2

In this section we propose a new comparison protocol whose output is one bit
encrypted comparison result (a > b).

4.1 Description of our protocol 2

Our proposed protocol 2 is described as Algorithm 2. The overview of Algo-
rithm 2 is as follows. Our protocol 2 is a modification of our proposed protocol 1.
Our protocol 1 and Veugen’s one proceed bit-by-bit to compute the comparison
result, while our protocol 2 proceeds 2 bits-by-2 bits to compute that.

We use two sets ∆̃ and ∆, and an element σ in ∆ as follows:

∆̃ := {0, 1, 2, 3} ⊊ Z, σ ∈ ∆ := {1, 2, 3} = ∆̃\{0} ⊊ Z.

We represent the integer a as follows:

a = (al−1, . . . , a0)2 = (AL−1, . . . , A0) ∈ Z≥0, Ai := (a2i+1, a2i)2 ∈ ∆̃ ⊊ Z.

The non-negative integer b is represented as well. By padding zeros if necessary,
we may assume that l is an even number in our proposed protocol 2. It is obvious
that L = l/2.

Moreover we denote an integer representation of (Ai−1, . . . , A0) ∈ Z≥0 and
(Bi−1, . . . , B0) ∈ Z≥0 by A(i) and B(i), respectively. Moreover we put ti :=
F(A(i), B(i)) for i = 1, . . . , L. Remark that

tL = F(A(L), B(L)) = F(a, b).

8 Takumi Kobayashi and Keisuke Hakuta

Algorithm 1 Our proposed protocol 1

Inputs: Alice : a = (al−1 . . . a0)2 and pk
Inputs: Bob : b = (bl−1 . . . b0)2, pk and sk
Outputs: Alice : Encpk(tl) such that tl = F̂(a, b)
Outputs: Bob : N/A
1: Alice encrypts a massage “1” and obtains Encpk(1)
2: Alice computes : t0 = 1,Encpk(t0) ← Encpk(1)
3: for i from 0 to l − 1 by +1 do
4: Alice chooses ci such that ci ∈ {0, 1} at random
5: if ci = 0 then
6: Alice computes: si = ti,Encpk(si) ← Encpk(ti)
7: else
8: Alice computes:
9: si = 1− ti,Encpk(si) ← Encpk(1− ti) = Encpk(1) · Encpk(ti)−1

10: end if
11: Alice sends Encpk(si) to Bob
12: if bi = 0 then
13: Bob computes: ui = 0,Encpk(ui) ← Encpk(0)
14: else
15: Bob computes: ui = si,Encpk(ui) ← Encpk(si)
16: Bob chooses r′ from random set at random
17: Bob computes (r′)N

18: Bob randomizes Encpk(ui) by computing Encpk(ui)× (r′)N

19: end if
20: Bob encrypts bi and obtains Encpk(bi)
21: Bob sends Encpk(bi) and Encpk(ui) to Alice
22: if ci ̸= 0 then
23: Alice computes: Encpk(ui) ← Encpk(bi − ui) = Encpk(bi) · Encpk(ui)

−1

24: end if
25: if ai = 0 then
26: Alice computes:
27: Encpk(ti+1) ← Encpk(ti + bi − ui) = Encpk(ti) · Encpk(bi) · Encpk(ui)

−1

28: else
29: Alice computes: Encpk(ti+1) ← Encpk(ui)
30: end if
31: end for
32: Alice computes: Encpk(tl) ← Encpk(1− tl) = Encpk(1) · Encpk(tl)−1

33: Alice outputs Encpk(tl)
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more 1 Enc, 0.5l + 3 M , 2.5 I, and 0.5l Exp more than Veugen’s protocol on
average. While Veugen’s protocol carries out (l−1) iterations, our proposed pro-
tocol 1 carries out l iterations. Since we can guess that the input size l is enough
large, our protocol 1 and Veugen’s one have almost the same computation cost.
Our protocol 1 has a following computational cost on average: Alice’s Enc, M ,
I, and Exp are 1, 2l + 1, 1.5l + 1, and 0. Bob’s Enc, M , I, and Exp are 1.5l,
0.5l, 0, and 0.5l. Furthermore Total Enc, M , I, and Exp are 1.5l + 1, 2.5l + 1,
1.5l + 1, and 0.5l. We refer the reader to [19] for more details.

We briefly discuss the security of our proposed protocol 1. Our security anal-
ysis is similar to Veugen’s one [19]. Differences of our protocol 1 from Veugen’s
one are Initialization step, Randomization step and Bit inverting step. In Initial-
ization step, Alice and Bob do not communicate ciphertexts. In Randomization
step, Bob randomizes a ciphertext of si depending on bi. Finally, in Bit inverting
step, Alice just carry out bit inverse. Consequently our modification does not
affect the security of Veugen’s one. In addition, Veugen’s one is secure against
semi-honest model [19, Section 2.3]. We can see that our proposed protocol 1 is
also secure against semi-honest model.

4 Proposed Protocol 2

In this section we propose a new comparison protocol whose output is one bit
encrypted comparison result (a > b).

4.1 Description of our protocol 2

Our proposed protocol 2 is described as Algorithm 2. The overview of Algo-
rithm 2 is as follows. Our protocol 2 is a modification of our proposed protocol 1.
Our protocol 1 and Veugen’s one proceed bit-by-bit to compute the comparison
result, while our protocol 2 proceeds 2 bits-by-2 bits to compute that.

We use two sets ∆̃ and ∆, and an element σ in ∆ as follows:

∆̃ := {0, 1, 2, 3} ⊊ Z, σ ∈ ∆ := {1, 2, 3} = ∆̃\{0} ⊊ Z.

We represent the integer a as follows:

a = (al−1, . . . , a0)2 = (AL−1, . . . , A0) ∈ Z≥0, Ai := (a2i+1, a2i)2 ∈ ∆̃ ⊊ Z.

The non-negative integer b is represented as well. By padding zeros if necessary,
we may assume that l is an even number in our proposed protocol 2. It is obvious
that L = l/2.

Moreover we denote an integer representation of (Ai−1, . . . , A0) ∈ Z≥0 and
(Bi−1, . . . , B0) ∈ Z≥0 by A(i) and B(i), respectively. Moreover we put ti :=
F(A(i), B(i)) for i = 1, . . . , L. Remark that

tL = F(A(L), B(L)) = F(a, b).
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Table 2. Variables in one iteration

ci Ai Bi Condition ti+1

0 0 0 ti+1 ← ti +Bi − ui + ⌊(d+Bi − 1)/d⌋ = ti
0 0 σ ti+1 ← ti +Bi − ui + ⌊(d+Bi − 1)/d⌋ = 1
0 σ 0 ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d− (Ai + 1))/d⌋ = 0
0 σ σ (Ai < Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti + (Bi −Ai − 1))/d⌋ = 1
0 σ σ (Ai = Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti − 1)/d⌋ = ti
0 σ σ (Ai > Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti + (Bi −Ai − 1))/d⌋ = 0

1 0 0 ti+1 ← ti +Bi − ui + ⌊(d+Bi)/d⌋ = ti
1 0 σ ti+1 ← ti +Bi − ui + ⌊(d+Bi)/d⌋ = 1
1 σ 0 ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d−Ai)/d⌋ = 0
1 σ σ (Ai < Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti + (Bi −Ai − 1))/d⌋ = 1
1 σ σ (Ai = Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti − 1)/d⌋ = ti
1 σ σ (Ai > Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti + (Bi −Ai − 1))/d⌋ = 0

In our proposed protocol 2 the value ti+1 is computed for each i (i = 0, 1, . . . , L−
1). The goal of our proposed protocol 2 is that Alice outputs a ciphertext of
tL = 1 − tL = 1 − F(A(L), B(L)) = 1 − F(a, b) = F̂(a, b) from their inputs
a and b. This is achieved by computing tL = F(A(L), B(L)) = F(a, b) and
F̂(a, b) = 1−F(a, b) = 1− tL.

In steps 1–2 of Algorithm 2, Alice carries out an initialization and denotes
t0 = 1. In step 3, Alice and Bob carry out iterations for i from 0 to L− 1 by +1.
In steps 4–10, Alice blinds ti (= F(A(i), B(i))) and sends it to Bob. Because of
this blind, Bob cannot distinguish whether a massage si is ti or 1− ti when Bob
decrypts it. In steps 11–17, Bob computes Encpk(Bi) and Encpk(ui) depending
on Bi and sends them to Alice. In steps 18–20, Alice solves the blind. In steps
21–35, Alice computes Encpk(ti+1) depending on Ai and ci. In step 36, Alice
obtains a ciphertext of F(a, b) through this iteration because we have

tL = F(a, b). (3)

Finally, Alice obtains a ciphertext of F̂(a, b) by bit inverse in steps 37–38. In
steps 8, 15, 19, 23, 25, 27, 29, 32, and 37, each chipertext can be computed by
the homomorphic property (1).

Moreover our protocol 2 needs a secure division protocol [20, Protocol 1] as
a subprotocol. In this division protocol, Alice inputs a ciphertext of an integer x
and a divisor d, and Bob inputs a divisor d and sk. At end of the protocol Alice
obtains a ciphertext of the division result ⌊x/d⌋ as the output. In step 24, 28,
33 of Algorithm 2, Alice and Bob need to perform the division protocol. On the
other hand, since Alice can store a ciphertext of the division result, in steps 25,
29 and 34 of Algorithm 2, they do not need to do that. In addition, this division
protocol needs a secure comparison protocol as a subprotocol. This comparison
protocol requires to output a ciphertext of comparison result (a > b) for input
integers a and b, with the size ⌊log2d⌋. We use our protocol 1 as the subprotocol.

4.2 Correctness

In this section we describe the correctness of our protocol 2. Now we recall that
σ ∈ ∆ = {1, 2, 3} = ∆̃\{0} ⊊ Z. We depict Table 2 which shows that how does
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Algorithm 2 Our proposed protocol 2

Inputs: Alice : a = (al−1, . . . , a0)2 = (AL−1, . . . , A0), d := 2w = 22 = 4 and pk
Inputs: Bob : b = (bl−1, . . . , b0)2 = (BL−1, . . . , B0), d := 2w = 22 = 4, pk and sk
Outputs: Alice : Encpk(tL) such that tL = F̂(a, b), Bob : N/A
1: Alice encrypts and computes Encpk(1),Encpk(d) and Encpk(1)

−1

2: Alice computes : t0 = 1,Encpk(t0) ← Encpk(1)
3: for i from 0 to L− 1 by +1 do
4: Alice chooses ci such that ci ∈ {0, 1} at random
5: if ci = 0 then
6: Alice computes: si = ti,Encpk(si) ← Encpk(ti)
7: else
8: Alice computes: si = 1− ti,Encpk(si) ← Encpk(1− ti)
9: end if
10: Alice sends Encpk(si) to Bob
11: Bob encrypts Bi and obtains Encpk(Bi)
12: if Bi = 0 then
13: Bob computes: ui = 0,Encpk(ui) ← Encpk(0)
14: else
15: Bob computes: ui = si +Bi,Encpk(ui) ← Encpk(si +Bi)
16: end if
17: Bob sends Encpk(Bi) and Encpk(ui) to Alice
18: if ci ̸= 0 then
19: Alice computes: Encpk(ui) ← Encpk(2Bi − ui + 1)
20: end if
21: if Ai = 0 then
22: if ci = 0 then
23: Alice computes: Encpk(Bi + d− 1)
24: Alice and Bob perform a division protocol: Alice inputs Encpk(Bi + d− 1)

and d, Bob inputs d and sk, Alice outputs Encpk(⌊(Bi + d− 1)/d⌋)
25: Alice computes: Encpk(ti+1) ← Encpk(ti +Bi − ui + ⌊(Bi + d− 1)/d⌋)
26: else
27: Alice computes: Encpk(Bi + d)
28: Alice and Bob perform a division protocol: Alice inputs Encpk(Bi + d) and

d, Bob inputs d and sk, Alice outputs Encpk(⌊(Bi + d)/d⌋)
29: Alice computes: Encpk(ti+1) ← Encpk(ti +Bi − ui + ⌊(Bi + d)/d⌋)
30: end if
31: else
32: Alice computes: Encpk(ui −Ai − 1 + d)
33: Alice and Bob perform a division protocol: Alice inputs Encpk(ui−Ai−1+d)

and d, Bob inputs d and sk, Alice outputs Encpk(⌊(ui −Ai − 1 + d)/d⌋)
34: Alice computes: Encpk(ti+1) ← Encpk(⌊(ui −Ai − 1 + d)/d⌋)
35: end if
36: end for
37: Alice computes: Encpk(tL) ← Encpk(1− tL)
38: Alice outputs Encpk(tL)
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Table 2. Variables in one iteration

ci Ai Bi Condition ti+1

0 0 0 ti+1 ← ti +Bi − ui + ⌊(d+Bi − 1)/d⌋ = ti
0 0 σ ti+1 ← ti +Bi − ui + ⌊(d+Bi − 1)/d⌋ = 1
0 σ 0 ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d− (Ai + 1))/d⌋ = 0
0 σ σ (Ai < Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti + (Bi −Ai − 1))/d⌋ = 1
0 σ σ (Ai = Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti − 1)/d⌋ = ti
0 σ σ (Ai > Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti + (Bi −Ai − 1))/d⌋ = 0

1 0 0 ti+1 ← ti +Bi − ui + ⌊(d+Bi)/d⌋ = ti
1 0 σ ti+1 ← ti +Bi − ui + ⌊(d+Bi)/d⌋ = 1
1 σ 0 ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d−Ai)/d⌋ = 0
1 σ σ (Ai < Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti + (Bi −Ai − 1))/d⌋ = 1
1 σ σ (Ai = Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti − 1)/d⌋ = ti
1 σ σ (Ai > Bi) ti+1 ← ⌊(ui +Ai − 1 + d)/d⌋ = ⌊(d+ ti + (Bi −Ai − 1))/d⌋ = 0

In our proposed protocol 2 the value ti+1 is computed for each i (i = 0, 1, . . . , L−
1). The goal of our proposed protocol 2 is that Alice outputs a ciphertext of
tL = 1 − tL = 1 − F(A(L), B(L)) = 1 − F(a, b) = F̂(a, b) from their inputs
a and b. This is achieved by computing tL = F(A(L), B(L)) = F(a, b) and
F̂(a, b) = 1−F(a, b) = 1− tL.

In steps 1–2 of Algorithm 2, Alice carries out an initialization and denotes
t0 = 1. In step 3, Alice and Bob carry out iterations for i from 0 to L− 1 by +1.
In steps 4–10, Alice blinds ti (= F(A(i), B(i))) and sends it to Bob. Because of
this blind, Bob cannot distinguish whether a massage si is ti or 1− ti when Bob
decrypts it. In steps 11–17, Bob computes Encpk(Bi) and Encpk(ui) depending
on Bi and sends them to Alice. In steps 18–20, Alice solves the blind. In steps
21–35, Alice computes Encpk(ti+1) depending on Ai and ci. In step 36, Alice
obtains a ciphertext of F(a, b) through this iteration because we have

tL = F(a, b). (3)

Finally, Alice obtains a ciphertext of F̂(a, b) by bit inverse in steps 37–38. In
steps 8, 15, 19, 23, 25, 27, 29, 32, and 37, each chipertext can be computed by
the homomorphic property (1).

Moreover our protocol 2 needs a secure division protocol [20, Protocol 1] as
a subprotocol. In this division protocol, Alice inputs a ciphertext of an integer x
and a divisor d, and Bob inputs a divisor d and sk. At end of the protocol Alice
obtains a ciphertext of the division result ⌊x/d⌋ as the output. In step 24, 28,
33 of Algorithm 2, Alice and Bob need to perform the division protocol. On the
other hand, since Alice can store a ciphertext of the division result, in steps 25,
29 and 34 of Algorithm 2, they do not need to do that. In addition, this division
protocol needs a secure comparison protocol as a subprotocol. This comparison
protocol requires to output a ciphertext of comparison result (a > b) for input
integers a and b, with the size ⌊log2d⌋. We use our protocol 1 as the subprotocol.

4.2 Correctness

In this section we describe the correctness of our protocol 2. Now we recall that
σ ∈ ∆ = {1, 2, 3} = ∆̃\{0} ⊊ Z. We depict Table 2 which shows that how does
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Table 3. Computational cost of protocol 2 without subprotocols

ci Ai Bi Alice Bob Total
Enc M I Exp Enc M I Exp Enc M I Exp

0 0 0 2 5L+ 1 L+ 2 0 2L 0 0 0 2L+ 2 5L+ 1 L+ 2 0
0 0 σ 2 5L+ 1 L+ 2 0 2L 0 0 0 2L+ 2 5L+ 1 L+ 2 0
0 σ 0 2 3L+ 1 L+ 2 0 2L 0 0 0 2L+ 2 3L+ 1 L+ 2 0
0 σ σ 2 3L+ 1 L+ 2 0 2L 0 0 0 2L+ 2 3L+ 1 L+ 2 0

1 0 0 2 8L+ 1 2L+ 2 0 L L 0 0 L+ 2 9L+ 1 2L+ 2 0
1 0 σ 2 8L+ 1 2L+ 2 0 L L 0 0 L+ 2 9L+ 1 2L+ 2 0
1 σ 0 2 7L+ 1 3L+ 2 0 L L 0 0 L+ 2 8L+ 1 3L+ 2 0
1 σ σ 2 7L+ 1 3L+ 2 0 L L 0 0 L+ 2 8L+ 1 3L+ 2 0

AVE 2 5.375L+ 1 1.875L+ 2 0 1.5L 0.5L 0 0 1.5L+ 2 5.875L+ 1 1.875L+ 2 0

and Exp are 3L, 8L, 5L, and 0. Bob’s Enc, M , I, and Exp are 4L, L, 0, and
2L. Furthermore Total Enc, M , I, and Exp are 7L, 9L, 5L, and 2L.

The computational cost in our protocol 2 without subprotocols is described
in Table 3. We estimate the computational cost with assumption that Alice and
Bob can store their ciphertexts which Alice or Bob has in their steps, respectively.
Each line in Table 3 represents Alice’s, Bob’s or Total computational cost when
ci, Ai andBi are respectively 0 or σ for all i. The bottom line in Table 3 represents
the average of Alice’s, Bob’s or Total computational cost. As a result, an average
of the computational cost in our protocol 2 including subprotocols is described
as follows: Alice’s Enc, M , I, and Exp are 3L+2, 13.375L+1, 6.875L+2, and
0. Bob’s Enc, M , I, and Exp are 5.5L, 1.5L, 0, and 2L. Furthermore Total Enc,
M , I, and Exp are 8.5L+ 2, 14.875L+ 1, 6.875L+ 2, and 2L.

Compared to the cost of our protocol 1, that of our protocol 2 is more expen-
sive. Nevertheless, we propose our protocol 2 whose the computation proceeds 2
bits-by-2 bits for the generalization. We expect that the generalization leads us
to develop more efficient secure comparison protocols.

4.4 Security

In this session we briefly discuss the security of our proposed protocol 2. Our
security analysis is similar to Veugen’s one [19]. We refer for more details to
[19, Section 2.3]. We can see that our proposed protocol 2 is secure against
semi-honest model [13, Definition7.2.2].

Now we check that any information about the messages is not leaked in
the protocol by looking their steps. In steps 4–10 of Algorithm 2, Alice blinds
Encpk(ti) by coin toss ci and sends Encpk(si) to Bob. Due to the blind, Bob can-
not distinguish whether a message si is ti or 1−ti when Bob decrypts Encpk(si).
Next, in steps 11–17, Bob computes Encpk(ui) depending on Bi. Moreover Bob
sends Encpk(Bi) and Encpk(ui) to Alice. Since the cryptosystem is semantically
secure, Alice cannot get any information about the messages from these cipher-
texts. Finally Alice and Bob cannot get any information about their messages
each other.

12 Takumi Kobayashi and Keisuke Hakuta

a value ti+1 depend on values ci, Ai and Bi in our protocol 2. The value ti+1 is
computed for each i (i = 0, 1, . . . , L− 1) using the following propositions:

Proposition 1. For given integers A(i+1) = (Ai, . . . , A0) ∈ Z≥0 and B(i+1) =
(Bi, . . . , B0) ∈ Z≥0 for i = 0, . . . , L− 1, if Ai < Bi then we have ti+1 = 1.

Proof. Here “(i + 1)-th iteration” stands for the iteration of steps 3–36 in Al-
gorithm 2 for i = 0, . . . , L − 1. Since Ai and Bi are their most significant bits
of the integers A(i+1) and B(i+1) in (i + 1)-th iteration, from Table 2, we have
ti+1 = F(A(i+1), B(i+1)) = 1. Thus Proposition 1 can be verified. ⊓⊔

Proposition 2. For given integers A(i+1) = (Ai, . . . , A0) ∈ Z≥0 and B(i+1) =
(Bi, . . . , B0) ∈ Z≥0 and ti for i = 0, . . . , L − 1, if ti = 1 and Ai = Bi then we
have ti+1 = 1.

Proof. If Ai and Bi are equal in (i+ 1)-th iteration, from Table 2, a value ti+1

depends on ti. Now if ti = 1, we have ti+1 = ti = 1. Moreover we consider that
Ai and Bi are equal for all i. Since we set t0 to 1 in step 2 of Algorithm 2, we
have ti+1 = ti = . . . = t0 = 1. Thus Proposition 2 can be verified. ⊓⊔

The correctness of our protocol 2 is that for Alice’s input a and Bob’s input
b, if a > b then Alice outputs tL = 1 otherwise Alice outputs tL = 0. A main idea
of the proof is that Alice has Equation (3) after L-th iteration. This is described
as Theorem 1. From Theorem 1, Alice can obtain a ciphertext of F̂(a, b) by
computing Encpk(1) · Encpk(tL)−1 in steps 37–38.

Theorem 1. In Algorithm 2, after L-th iteration we have Equation (3).

Proof. From Proposition 1, Proposition 2, and Table 2, it is not hard to prove
that our protocol 2 is correct. ⊓⊔

4.3 Computational Cost

Now we recall notations Enc, M , I, and Exp. Note that Dec stands for the com-
putational cost of one decryption. We first estimate about the computational cost
of subprotocols we need. As a subprotocol we use a secure division protocol [20,
Protocol 1] which needs a secure comparison protocol. Veugen states that “Ex-
cept for one execution of a secure comparison protocol, the remaining steps of
this division protocol require 2 Enc, 3 M and 1 I by Alice, and 1 Enc and 1 Dec
by Bob”. Using precomputing techniques, in Paillier encryption scheme, we may
assume that the computational cost of one decryption and one exponent are the
almost same [15]. Furthermore we use our proposed protocol 1 as a secure com-
parison protocol in this division protocol. Since the input size of the comparison
protocol is only ⌊log2d⌋ = ⌊log22w⌋ = w = 2, the comparison protocol is quite
efficient. For one execution of the protocol, our proposed protocol 1 requires 1
Enc, 5 M , and 4 I by Alice, and 3 Enc, 1 M , and 1 Exp by Bob on average.
Consequently, for L executions of the division protocol including the comparison
protocol, an average of the computational cost are follows: Alice’s Enc, M , I,
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Table 3. Computational cost of protocol 2 without subprotocols

ci Ai Bi Alice Bob Total
Enc M I Exp Enc M I Exp Enc M I Exp

0 0 0 2 5L+ 1 L+ 2 0 2L 0 0 0 2L+ 2 5L+ 1 L+ 2 0
0 0 σ 2 5L+ 1 L+ 2 0 2L 0 0 0 2L+ 2 5L+ 1 L+ 2 0
0 σ 0 2 3L+ 1 L+ 2 0 2L 0 0 0 2L+ 2 3L+ 1 L+ 2 0
0 σ σ 2 3L+ 1 L+ 2 0 2L 0 0 0 2L+ 2 3L+ 1 L+ 2 0

1 0 0 2 8L+ 1 2L+ 2 0 L L 0 0 L+ 2 9L+ 1 2L+ 2 0
1 0 σ 2 8L+ 1 2L+ 2 0 L L 0 0 L+ 2 9L+ 1 2L+ 2 0
1 σ 0 2 7L+ 1 3L+ 2 0 L L 0 0 L+ 2 8L+ 1 3L+ 2 0
1 σ σ 2 7L+ 1 3L+ 2 0 L L 0 0 L+ 2 8L+ 1 3L+ 2 0

AVE 2 5.375L+ 1 1.875L+ 2 0 1.5L 0.5L 0 0 1.5L+ 2 5.875L+ 1 1.875L+ 2 0

and Exp are 3L, 8L, 5L, and 0. Bob’s Enc, M , I, and Exp are 4L, L, 0, and
2L. Furthermore Total Enc, M , I, and Exp are 7L, 9L, 5L, and 2L.

The computational cost in our protocol 2 without subprotocols is described
in Table 3. We estimate the computational cost with assumption that Alice and
Bob can store their ciphertexts which Alice or Bob has in their steps, respectively.
Each line in Table 3 represents Alice’s, Bob’s or Total computational cost when
ci, Ai andBi are respectively 0 or σ for all i. The bottom line in Table 3 represents
the average of Alice’s, Bob’s or Total computational cost. As a result, an average
of the computational cost in our protocol 2 including subprotocols is described
as follows: Alice’s Enc, M , I, and Exp are 3L+2, 13.375L+1, 6.875L+2, and
0. Bob’s Enc, M , I, and Exp are 5.5L, 1.5L, 0, and 2L. Furthermore Total Enc,
M , I, and Exp are 8.5L+ 2, 14.875L+ 1, 6.875L+ 2, and 2L.

Compared to the cost of our protocol 1, that of our protocol 2 is more expen-
sive. Nevertheless, we propose our protocol 2 whose the computation proceeds 2
bits-by-2 bits for the generalization. We expect that the generalization leads us
to develop more efficient secure comparison protocols.

4.4 Security

In this session we briefly discuss the security of our proposed protocol 2. Our
security analysis is similar to Veugen’s one [19]. We refer for more details to
[19, Section 2.3]. We can see that our proposed protocol 2 is secure against
semi-honest model [13, Definition7.2.2].

Now we check that any information about the messages is not leaked in
the protocol by looking their steps. In steps 4–10 of Algorithm 2, Alice blinds
Encpk(ti) by coin toss ci and sends Encpk(si) to Bob. Due to the blind, Bob can-
not distinguish whether a message si is ti or 1−ti when Bob decrypts Encpk(si).
Next, in steps 11–17, Bob computes Encpk(ui) depending on Bi. Moreover Bob
sends Encpk(Bi) and Encpk(ui) to Alice. Since the cryptosystem is semantically
secure, Alice cannot get any information about the messages from these cipher-
texts. Finally Alice and Bob cannot get any information about their messages
each other.
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5 Conclusion and Future Works

We proposed two secure comparison protocols whose output is one bit encrypted
comparison result (a > b). Our first protocol is a modification of Veugen’s pro-
tocol [19, Protocol 2] and has simpler algorithm than that of Veugen’s one. Our
first protocol has potential for some applications such as biometrics, statistics
and so on. Our second protocol is a modification of first one and proceeds 2
bits-by-2 bits. This protocol is a first step for a generalization of our secure
comparison protocols. Our two protocols are secure against semi-honest model.
Moreover we proved for the correctness and estimated the computational cost for
our proposed protocols. Our work has interesting potential to many application
such as secure biometrics, secure statistics and so on.

A goal of our study is developing a secure comparison protocol which the
computation proceeds w-bits by w-bits for any non-negative integer w. As fu-
ture works, we need to compare our protocols and other similar protocols. In
addition we need to discuss the formal security of our protocols. Moreover we
try developing a secure comparison protocol which the computation proceeds
w-bits by w-bits by modifying our proposed protocol 2.
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Abstract. The blockchain technique was first proposed called Bitcoin
in 2008 and is a distributed database technology. Public Key Infrastruc-
ture(PKI) system, which is one of the key management systems, is a
centralized system. There is a possibility of single point failure in cur-
rently used centralized PKI system. Classical digital signature algorithm;
ECDSA has used the well-known cryptocurrencies such as Bitcoin and
Ethereum. Using the Shor’s algorithm, it is vulnerable to an attack by
the quantum adversary. In this paper, we propose a blockchain-based
key management system using quantum-resistant cryptography. Since it
uses a GLP digital signature scheme, which is a secure lattice-based dig-
ital signature scheme. Therefore, our construction is based on quantum-
resistant cryptography, it is secure against the attack of a quantum adver-
sary and ensures long-term safety. In addition, we design a decentralized
blockchain structure with extended X.509 certificate, and it is secure for
the single point of failure.

Keywords: blockchain · quantum-resistant · key management system.

1 Introduction

IBM developed a quantum computer with 5-qubit in 2016 and a new quantum
computer with 50-qubit in Nov. 2017. The research team of IBM has developed
a quantum computer that allows the public to simulate a quantum computer
through an IBM Q Experience [9]. Therefore, the emergence of the quantum
computer is not theoretical but becomes practical. Public key cryptosystems,
such as Diffie-Hellman (DH) key exchange protocol and RSA, are based on the
difficulty of Discrete Logarithm Problem (DLP), Elliptic Curve DLP (EC-DLP),
and Integer Factorization Problem (IFP). However, DLP and IFP can be solved

� This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00555,
Towards Provable-secure Multi-party Authenticated Key Exchange Protocol based
on Lattices in a Quantum World)
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within the polynomial time by Shor’s algorithm [16] using the quantum com-
puter. If universal quantum computers can be feasible, public key cryptosystems
whose difficulties are based on the number theoretic problem will be broken in
a polynomial time. Therefore, we need a secure public key cryptosystem against
the quantum adversary. Post Quantum Cryptography (PQC) plays an impor-
tant roles in building a secure cryptosystem against both classical and quantum
adversaries.

A public-key cryptosystem needs Public Key Infrastructure (PKI), which
guarantees the integrity of all user’s public keys by binding them with its owner.
The currently used PKI system is X.509 v3 [19] as recommended by the in-
ternational standards. However, the X.509 PKI system has disadvantages such
as centralization, single point failure, and fully trusted Certificate Authority
(CA). CA is a trusted third party whose signature on the certificate guarantees
the authenticity of the public key with each entity. Therefore, the currently used
centralized PKI system has problems with availability, due to the centralized CA.
The most famous cryptocurrency, Bitcoin [15] is the first decentralized virtual-
currency. Bitcoin uses blockchain, which is a transaction database (or distributed
ledger) shared by all peer nodes. With the transaction of the blockchain, anyone
can find each block of information in the transaction history. Therefore, each
peer node operates both client and server on their network at the same time,
since the blockchain technique is decentralized.

In this paper, we propose QChain, a quantum-resistant decentralized PKI
system with extended X.509 certificate. To construct QChain, we combine the
blockchain and lattice-based cryptography which is one of PQC primitives. QChain
is a practical method for managing public key cryptography in a decentralized
manner.

2 Related Work

2.1 Blockchain-based PKI

Emercoin(EMC) [10] is cryptocurrency, which is used for blockchain-based PKI
system. EMCSSH integrates between the OpenSSH and EMC blockchain, pro-
viding decentralized PKI. EMC blockchain is based on both Proof-of-Work and
Proof-of-Stake consensus protocol and forked from Peercoin. EMC uses the SHA-
256 hash function, and it is not secure against the quantum adversaries by
Grover’s algorithm [5].

Matsumoto et al. suggest the Ethereum-based PKI system called IKP [14].
IKP’s decentralized nature and smart contract system allow open participation
offer incentives for vigilance over CAs, and enable financial resourse against
misbehavior. However, there are some security issues for Ethereum platform.
In addition, IKP uses the quantum-resistant hash function called Ethash [17].
Ethereum is based on ECDSA signature algorithm, which is not secure against
the quantum adversaries.

Yakubov et al. propose the blockchain-based PKI management framework
[18] in 2018. They design a blockchain-based PKI, which modifies the X.509
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within the polynomial time by Shor’s algorithm [16] using the quantum com-
puter. If universal quantum computers can be feasible, public key cryptosystems
whose difficulties are based on the number theoretic problem will be broken in
a polynomial time. Therefore, we need a secure public key cryptosystem against
the quantum adversary. Post Quantum Cryptography (PQC) plays an impor-
tant roles in building a secure cryptosystem against both classical and quantum
adversaries.

A public-key cryptosystem needs Public Key Infrastructure (PKI), which
guarantees the integrity of all user’s public keys by binding them with its owner.
The currently used PKI system is X.509 v3 [19] as recommended by the in-
ternational standards. However, the X.509 PKI system has disadvantages such
as centralization, single point failure, and fully trusted Certificate Authority
(CA). CA is a trusted third party whose signature on the certificate guarantees
the authenticity of the public key with each entity. Therefore, the currently used
centralized PKI system has problems with availability, due to the centralized CA.
The most famous cryptocurrency, Bitcoin [15] is the first decentralized virtual-
currency. Bitcoin uses blockchain, which is a transaction database (or distributed
ledger) shared by all peer nodes. With the transaction of the blockchain, anyone
can find each block of information in the transaction history. Therefore, each
peer node operates both client and server on their network at the same time,
since the blockchain technique is decentralized.

In this paper, we propose QChain, a quantum-resistant decentralized PKI
system with extended X.509 certificate. To construct QChain, we combine the
blockchain and lattice-based cryptography which is one of PQC primitives. QChain
is a practical method for managing public key cryptography in a decentralized
manner.

2 Related Work

2.1 Blockchain-based PKI

Emercoin(EMC) [10] is cryptocurrency, which is used for blockchain-based PKI
system. EMCSSH integrates between the OpenSSH and EMC blockchain, pro-
viding decentralized PKI. EMC blockchain is based on both Proof-of-Work and
Proof-of-Stake consensus protocol and forked from Peercoin. EMC uses the SHA-
256 hash function, and it is not secure against the quantum adversaries by
Grover’s algorithm [5].

Matsumoto et al. suggest the Ethereum-based PKI system called IKP [14].
IKP’s decentralized nature and smart contract system allow open participation
offer incentives for vigilance over CAs, and enable financial resourse against
misbehavior. However, there are some security issues for Ethereum platform.
In addition, IKP uses the quantum-resistant hash function called Ethash [17].
Ethereum is based on ECDSA signature algorithm, which is not secure against
the quantum adversaries.

Yakubov et al. propose the blockchain-based PKI management framework
[18] in 2018. They design a blockchain-based PKI, which modifies the X.509

The 19th World Conference on Information Security Applications

-241-



4 H. An et al.

3 Our Approach

Our proposed quantum-resistant PKI scheme is based on the ring-LWE prob-
lem. In this section, we describe the full structure of QChain in detail. We
construct QChain, which is quantum-resistant PKI using blockchain. In the fol-
lowing sections, we describe the structure of scheme and modified GLP signature
scheme. We integrate the modified GLP signature scheme, that is first approach
in blockchain. QChain uses the extension field of X.509 v3 certificate. Therefore,
there is an advantage that it can be compatible with existing X.509 certificate
standards.

3.1 Modified GLP Signature

GLP signature scheme is known to be faster than GPV [4] and LYU [12] scheme
which belong to lattice-based signature scheme, and is believed to be secure
against side-channel attacks till now. We has briefly described the GLP signature
scheme in Section 2.2. In order to increase its performance, we modify the GLP
signature scheme by integrating Number Theoretic Transformation (NTT) [8]
like Algorithm 1. Let Rk

q be a subset of the ring Rq, and that consists of all
polynomials with coefficients in the range [−k, k].

Algorithm 1: Modified GLP Signature

Signing Key : r1, r2
$←− χσ

Verification Key: a
$←− Rq, â ← NTT(a), r̂1 ← NTT(r1), r̂2 ← NTT(r2),

t̂ ← âr̂1 + r̂2
Hash Function : H : {0, 1}∗ → Dn

32

1 Sign(µ,a, r1, r2)
2 begin

3 y1,y2
$←− Rk

q ;
4 c ← H(ay1 + y2, µ); ĉ = NTT(c);
5 ẑ1 ← r̂1 ∗ ĉ+ ŷ1; ẑ2 ← r̂2 ∗ ĉ+ ŷ2;
6 z1 ← NTT−1(ẑ1); z2 ← NTT−1(ẑ2);

7 if z1 /∈ Rk−32
q or z2 /∈ Rk−32

q then
8 go to line 3;
9 else

10 return (z1, z2, c);

11 Verify(µ, z1, z2, c,a, t)
12 begin

13 if z1, z2 ∈ Rk−32
q then

14 c �= H(az1 + z2 − tc, µ);
15 return reject;

16 else
17 return success;
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certificates. X.509 v3 certificate standard consists of extension fields, which are
reserved for extra information. They modify X.509 v3 certificate and design
hybrid X.509 certificate, which consists of blockchain name, CA key and subject
key identifier, and hashing algorithm in the extension field. This work is based
on smart contract in Ethereum.

Certcoin [3] is the public and decentralized PKI system using blockchain tech-
nique and based on Namecoin. In revocation phase, they did not use Certificate
Revocation List (CRL). They consider that Certcoin uses RSA accumulators,
which is insecure against the quantum adversaries.

2.2 Lattice-based Signature Scheme

Compared to the PQC primitives lattice-based primitives are faster and have
smaller signatures size than others. In general since ring-LWE-based digital sig-
natures can provide the smallest time-data complexity compared with others.
Akleylek et al. proposed the ring-LWE based signature scheme called Ring-

TESLA [1]. Secret key consist of a tuple of three polynomials (s, e1, e2)
$←− Rq,

e1 and e2 with small coefficients. Polynomial a1, a2
$←− Rq, and computes b1 =

a1s+ e1 mod q and b2 = a2s+ e2 mod q. To sign the message m, signing algo-

rithm samples y
$←− Rq . Then, computes c′ = H(�v1�d,q, �v2�d,q,m) and polyno-

mial z = y+sc. Signature value is a tuple of (z, c′). To verify signature (z, c′) with
message m, verification algorithm computes H(�a1z− b1c�d,q, �a2z− b2c�d,q,m).

Güneysu et al. [6,7] published the GLP signature scheme based on ring-LWE

problem. Polynomial ring defines Rpn

= Zq[X]/(Xn+1) and Rpn

k defines subset

of the ring Rpn

. Rpn

k consists of all polynomials with coefficients in the range
[−k, k]. To sign message µ, it needs cryptographic hash function H with range
Dn

32. For n ≥ 512 consists of all polynomials of degree n − 1 that have all zero
coefficients except for at most 32 coefficient that is ±1. First, we need to read 5-
bit (r1r2r3r4r5) at a time. If r1 is 0, put −1 in position r2r3r4r5. Otherwise, put
1 in position r2r3r4r5. In Section 3.1, we will describe modified GLP signature
scheme.

Fig. 1. Full Structure of QChain
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3 Our Approach

Our proposed quantum-resistant PKI scheme is based on the ring-LWE prob-
lem. In this section, we describe the full structure of QChain in detail. We
construct QChain, which is quantum-resistant PKI using blockchain. In the fol-
lowing sections, we describe the structure of scheme and modified GLP signature
scheme. We integrate the modified GLP signature scheme, that is first approach
in blockchain. QChain uses the extension field of X.509 v3 certificate. Therefore,
there is an advantage that it can be compatible with existing X.509 certificate
standards.

3.1 Modified GLP Signature

GLP signature scheme is known to be faster than GPV [4] and LYU [12] scheme
which belong to lattice-based signature scheme, and is believed to be secure
against side-channel attacks till now. We has briefly described the GLP signature
scheme in Section 2.2. In order to increase its performance, we modify the GLP
signature scheme by integrating Number Theoretic Transformation (NTT) [8]
like Algorithm 1. Let Rk

q be a subset of the ring Rq, and that consists of all
polynomials with coefficients in the range [−k, k].

Algorithm 1: Modified GLP Signature

Signing Key : r1, r2
$←− χσ

Verification Key: a
$←− Rq, â ← NTT(a), r̂1 ← NTT(r1), r̂2 ← NTT(r2),

t̂ ← âr̂1 + r̂2
Hash Function : H : {0, 1}∗ → Dn

32

1 Sign(µ,a, r1, r2)
2 begin

3 y1,y2
$←− Rk

q ;
4 c ← H(ay1 + y2, µ); ĉ = NTT(c);
5 ẑ1 ← r̂1 ∗ ĉ+ ŷ1; ẑ2 ← r̂2 ∗ ĉ+ ŷ2;
6 z1 ← NTT−1(ẑ1); z2 ← NTT−1(ẑ2);

7 if z1 /∈ Rk−32
q or z2 /∈ Rk−32

q then
8 go to line 3;
9 else

10 return (z1, z2, c);

11 Verify(µ, z1, z2, c,a, t)
12 begin

13 if z1, z2 ∈ Rk−32
q then

14 c �= H(az1 + z2 − tc, µ);
15 return reject;

16 else
17 return success;
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3.3 QChain Scheme

The polynomial ring definesRq = Zq[X]/(Xn+1). The error distribution χσ uses
a discrete Gaussian distribution with standard deviation σ. For efficient encryp-
tion time, we use NTT operations. The NTT is commonly used in the implemen-
tation of lattice-based cryptography. NTT operation denotes ẑ = NTT(z). Cryp-

tographic nonce and random number are randomly selected nonce
$←− {0, 1}n and

rand
$←− {0, 1}n. We denote the hash function and signature algorithm H() and

Sign(), respectively. The public and private key denote pk and privK, respec-
tively. For a polynomial g = Σ1023

i=0 giX
i ∈ Rq, we define

NTT(g) = ĝ =
1023∑
i=0

ĝiX
i where, ĝi =

1023∑
j=0

γjgjω
ij

where, ω = 49, γ =
√
ω = 7. The function NTT−1 defines the inverse of NTT

function.

NTT−1(ĝ) = g =

1023∑
i=0

ĝiX
i where, gi = n−1γ−i

1023∑
j=0

ĝjω
ij

where, n−1 mod q = 12277, γ−1 mod q = 8778, ω−1 mod q = 1254.
The QChain scheme is described as follows:

• QChain.Setup(1λ): Choose security parameter λ and output a parameter
n, q, and σ =

√
16/2 ≈ 2.828 [2].

• QChain.KeyGen(n, σ): Polynomial r1 and r2 sampled from the Gaussian
distribution use NTT operation in polynomial multiplication and addition.

r1,i, r2,i ← χσ; y1,i, y2,i
$←− Rk

q ; ai
$←− Rq; âi ← NTT(ai);

r̂1,i ← NTT(r1,i); r̂2,i ← NTT(r2,i); ŷ1,i ← NTT(y1,i); ŷ2,i ← NTT(y2,i);

p̂i ← r̂1,i − âi ∗ r̂2,i; t̂i ← âi ∗ r̂1,i + r̂2,i;

The public key is (âi, p̂i, t̂i) ∈ pki and the private key is (r̂1,i, r̂2,i, ŷ1,i, ŷ2,i) ∈
privKi for user i.
• QChain.GenesisBlock.Setup(): The genesis block is the first block of QChain.
We also call it block 0, which is hardcoded into the software of our system.
The genesis block does not have previous hash value. Therefore, we use {0}n
for previous hash value in genesis block. We fix i = 210 in genesis block.

nonce
$←− {0, 1}n; randi

$←− {0, 1}n;where, 0 ≤ i ≤ 210

• QChain.GenesisBlock.Merkle(): We construct Merkle hash tree using ran-
dom number randi, timestamp, hash function H(), and the signature algo-
rithm Sign(). In genesis block, we fix pki = randi, IDi = i, and Usernamei =
i. Then, we compute the top hash value Hroot using each hash value of leaf
nodes.

Title Suppressed Due to Excessive Length 5

3.2 Structure of QChain

Figure 1 shows the full structure of QChain. We use ring-LWE encryption
scheme, which is quantum-resistant primitive in QChain. More precisely, the
public key encryption scheme is based on ring-LWE by Lyubashevsky et al. [13]
which is secure against the quantum adversaries.

Figure 2 shows extended certificate for QChain. In the structure of QChain,
each block consists of the previous hash, nonce, timestamp, a centralized public
key of the user, hash value of the block, and Merkle hash tree. Users can com-
municate with the application data using the public key cryptosystem based on
ring-LWE scheme. QChain certificate contain the following fields:

Fig. 2. Extended Certificate for QChain

- Version Number: X.509 standards has three kinds of version. Version 1 is
default format, and if the Initiator Unique Identifier or Subject Unique Iden-
tifier is present, that must use version 2. For more extension of certificates,
the version must be used 3.

- Signature: This field includes signature algorithm and certificate signature.
It covers all other field values and signs the certificate.

- CRL Distribution Point: This field includes a list of which establishes
a CRL distribution points. Each distribution point contains a name and
optionally reasons for revocation and the CRL issuer name, specifically, block
leader.

- Asserted Data: This field consists of the previous hash value, Merkle root,
block number. Previous hash value is based on the previous block.

If the leader is a malicious node, the certificate is abolished and a new leader
is elected. Thus, it prevents malicious node of the leader. The leader has a CRL,
and the user confirms revocation of the public key in the leader’s CRL. The
previous leader transfers the CRL and its hash value to the next leader when
the leader changes.
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3.3 QChain Scheme

The polynomial ring definesRq = Zq[X]/(Xn+1). The error distribution χσ uses
a discrete Gaussian distribution with standard deviation σ. For efficient encryp-
tion time, we use NTT operations. The NTT is commonly used in the implemen-
tation of lattice-based cryptography. NTT operation denotes ẑ = NTT(z). Cryp-

tographic nonce and random number are randomly selected nonce
$←− {0, 1}n and

rand
$←− {0, 1}n. We denote the hash function and signature algorithm H() and

Sign(), respectively. The public and private key denote pk and privK, respec-
tively. For a polynomial g = Σ1023

i=0 giX
i ∈ Rq, we define

NTT(g) = ĝ =
1023∑
i=0

ĝiX
i where, ĝi =

1023∑
j=0

γjgjω
ij

where, ω = 49, γ =
√
ω = 7. The function NTT−1 defines the inverse of NTT

function.

NTT−1(ĝ) = g =

1023∑
i=0

ĝiX
i where, gi = n−1γ−i

1023∑
j=0

ĝjω
ij

where, n−1 mod q = 12277, γ−1 mod q = 8778, ω−1 mod q = 1254.
The QChain scheme is described as follows:

• QChain.Setup(1λ): Choose security parameter λ and output a parameter
n, q, and σ =

√
16/2 ≈ 2.828 [2].

• QChain.KeyGen(n, σ): Polynomial r1 and r2 sampled from the Gaussian
distribution use NTT operation in polynomial multiplication and addition.

r1,i, r2,i ← χσ; y1,i, y2,i
$←− Rk

q ; ai
$←− Rq; âi ← NTT(ai);

r̂1,i ← NTT(r1,i); r̂2,i ← NTT(r2,i); ŷ1,i ← NTT(y1,i); ŷ2,i ← NTT(y2,i);

p̂i ← r̂1,i − âi ∗ r̂2,i; t̂i ← âi ∗ r̂1,i + r̂2,i;

The public key is (âi, p̂i, t̂i) ∈ pki and the private key is (r̂1,i, r̂2,i, ŷ1,i, ŷ2,i) ∈
privKi for user i.
• QChain.GenesisBlock.Setup(): The genesis block is the first block of QChain.
We also call it block 0, which is hardcoded into the software of our system.
The genesis block does not have previous hash value. Therefore, we use {0}n
for previous hash value in genesis block. We fix i = 210 in genesis block.

nonce
$←− {0, 1}n; randi

$←− {0, 1}n;where, 0 ≤ i ≤ 210

• QChain.GenesisBlock.Merkle(): We construct Merkle hash tree using ran-
dom number randi, timestamp, hash function H(), and the signature algo-
rithm Sign(). In genesis block, we fix pki = randi, IDi = i, and Usernamei =
i. Then, we compute the top hash value Hroot using each hash value of leaf
nodes.
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Then, we can generate (ĉ1, ĉ2) and the ciphertext is c = (ĉ1, ĉ2) using a user
public key pki and message m.
• QChain.User.Dec(privKi, c): To decrypt message c = (ĉ1, ĉ2), decryption
algorithm as follows:

r̂2,i ← privKi; (ĉ1, ĉ2) ← c;m′ ← NTT−1(ĉ1 ∗ r̂2 + ĉ2);m ← Decode(m′);

Decode() is an error reconciliation function. In QChain.Enc() function, we
encode the message m. To decode the message m′, we use Decode() function.
The Decode() function defines as follows:

Decode(m) :=

⌊
2

q
·m · �q/2�

⌉
·
⌊q
2

⌋

Fig. 3. A typical use case of QChain to setup secure communication

Figure 3 illustrates a typical use case of QChain to setup secure communica-
tion. The first QChain operator initiates genesis block (block 0). The operator
has five-step algorithms. QChain.Setup() sets the parameter of QChain.KeyGen()
makes a public and a private key of users. Then, QChain.Genesis Block.Setup(),
QChain.GenesisBlock.Merkle(), and QChain.GenesisBlock.Final() algorithms oper-
ate to generate the genesis block. To register the public key, users setQChain.User.
Setup() algorithm and they can register the public key with algorithmQChain.User.
Add(). They can also verify the public key with algorithm QChain.User.Verify().
Using this algorithm, users can challenge to QChain for verifying the anonymous
user. QChain will answer if it is an authenticated user or not. Finally, through
algorithms QChain.User.Enc() and QChain.User.Dec(), users can communicate
application data securely with each other.

Title Suppressed Due to Excessive Length 7

• QChain.GenesisBlock.Final(): We finally construct the genesis block in this
final algorithm. To make a previous hash of block 1, QChain needs a hash
value. Previous hash value computes as follows:

HBlock0 = H(({0})n||nonce||timestamp||Hroot)

• QChain.User.Setup(pki, Hroot): In the user setup algorithm, it is similar to
QChain.GenesisBlock.Setup() algorithm. The user setup algorithm operates
as follows:

Previous hash ← HBlock0;

nonce
$←− {0, 1}n; pki ← User public key ∈ {0, 1}n;where, 0 ≤ i ≤ l ≤ 210

• QChain.User.Add(IDi, Usernamei, privKi, Certi): After the genesis block
has been made by the QChain.User.Setup() algorithm, we add information
about the user’s public keys as follows:

H(IDi); H(Usernamei); (r̂1,i, r̂2,i, ŷ1,i, ŷ2,i) ← privKi;

y1,i ← NTT−1(ŷ1,i); y2,i ← NTT−1(ŷ2,i);

(âi, p̂i) ← pki; ai ← NTT−1(âi);

ci ← H(aiy1,i + y2,i, IDi); ĉi ← NTT(c)

r1,i ← NTT−1(r̂1,i); r2,i ← NTT−1(r̂2i);

Sign(IDi, ai, r1,i, r2,i);

Using IDi and Usernamei, we compute each hash and signature value. The
output signature value is (z1,i, z2,i, ĉi). Then, we construct Merkle hash tree
same as genesis block process. The maximum users of each block are 210. Be-
cause we restrict the maximum depth of Merkle hash tree due to the memory
complexity. The Sign() algorithm is a modified GLP signature scheme.
• QChain.User.Verify(IDi, pki, Sign(Certi)): To verify the public key pki and
Sign(Certi) of the user, using the verify algorithm V erify(). The user verify
algorithm runs as follows:

âi, t̂i ← pki; ai ← NTT−1(âi); ti ← NTT−1(t̂i);

z1,i, z2,i, ĉi ← Sign(IDi); ci ← NTT−1(ĉi);

V erify(IDi, z1,i, z2,i, ci, ai, ti);

Using public parameters pki and Sign(IDi), we can easily verify the user.
• QChain.User.Enc(pki,m): To encrypt a message m ∈ R2, the encryption
algorithm runs as follows:

(âi, p̂i, t̂i) ← pki; (ai, pi, ti) ← (NTT−1(âi),NTT
−1(p̂i),NTT

−1(t̂i));

e1, e2, e3 ← χσ; ê1 ← NTT(e1); ê2 ← NTT(e2); m̂ ← m ·
⌊q
2

⌋
;

(ĉ1, ĉ2) ← (âi ∗ ê1 + ê2, p̂i ∗ ê1 + NTT(e3 + m̂));
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Then, we can generate (ĉ1, ĉ2) and the ciphertext is c = (ĉ1, ĉ2) using a user
public key pki and message m.
• QChain.User.Dec(privKi, c): To decrypt message c = (ĉ1, ĉ2), decryption
algorithm as follows:

r̂2,i ← privKi; (ĉ1, ĉ2) ← c;m′ ← NTT−1(ĉ1 ∗ r̂2 + ĉ2);m ← Decode(m′);

Decode() is an error reconciliation function. In QChain.Enc() function, we
encode the message m. To decode the message m′, we use Decode() function.
The Decode() function defines as follows:

Decode(m) :=

⌊
2

q
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·
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2
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Fig. 3. A typical use case of QChain to setup secure communication

Figure 3 illustrates a typical use case of QChain to setup secure communica-
tion. The first QChain operator initiates genesis block (block 0). The operator
has five-step algorithms. QChain.Setup() sets the parameter of QChain.KeyGen()
makes a public and a private key of users. Then, QChain.Genesis Block.Setup(),
QChain.GenesisBlock.Merkle(), and QChain.GenesisBlock.Final() algorithms oper-
ate to generate the genesis block. To register the public key, users setQChain.User.
Setup() algorithm and they can register the public key with algorithmQChain.User.
Add(). They can also verify the public key with algorithm QChain.User.Verify().
Using this algorithm, users can challenge to QChain for verifying the anonymous
user. QChain will answer if it is an authenticated user or not. Finally, through
algorithms QChain.User.Enc() and QChain.User.Dec(), users can communicate
application data securely with each other.
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iv) Scalability: QChain increases linearly with scalability. Therefore, the com-
plexity is O(n). The advantage with QChain is that it does not need to
increase the number of TTP servers even if the number of users and public
information increases. However, the X.509 v3 PKI system must increase the
computing power of the server in order to add the user’s public information,
because TTP of X.509 v3 PKI system stores and authenticates the user’s
public information.

v) Trust Model: The main point of QChain is decentralized service for PKI
system. Therefore, QChain does not need TTP where X.509 v3 PKI system
must have TTP. Due to the existence of TTP, X.509 v3 PKI system has a
problem of single point failure.

4.3 Comparision with Related Work

We compare the features between our construction and related work, such as
Certcoin, IKP, and Emercoin. Table 1 shows the comparison of QChain and re-
lated work. In dependence on existing cryptocurrency system, Certcoin is based
on Namecoin, which is forked from Bitcoin. Emercoin [10] is also based on Peer-
coin. Lastly, IKP [14] is based on Ethereum smart contract platform.

Table 1. Comparison of QChain and Related Work

System QChain Certcoin [3] IKP [14] Emercoin [10]

Dependence

N
Namecoin

Ethereum
Peercoinon Existing

(fork of Bitcoin) (fork of Bitcoin)Cryptocurrency
System

Extending
Y Y N N

X.509 Certificates

Signature
GLP ECDSA ECDSA RSA

Scheme

Complexity on

20.268n+O(n) polynomial-time1 polynomial-time1 polynomial-time1Signature using
Quantum Computer

Hash Function
Not

SHA256 Ethash SHA256
Specific

Revocation Method
CRL,

Timestamp Smart Contract
Update

Timestamp by Administrator

1: O((logn)2(log logn)(log log logn))

We extend the X.509 v3 certificate with extension fields. Certcoin also ex-
tends the same approach. However, IKP and Emercoin do not use X.509 cer-
tificate. Instead, they use smart contract and makes new blocks, respectively.
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4 Security Analysis

4.1 Generic Attack

Grover et al. suggest the database search algorithm called Grover’s algorithm [5].
Our construction uses n1-bit hash function. To break hash function, the com-
plexity of brute-force attack is O(

√
2n1). Attacking a lattice-based cryptosystem,

which has n2-bit security key dimension with a finding shorest lattice vector
using sphere-sieve also requires 20.268n2+O(n2)-bit complexity [11]. Due to the
ring-LWE problem is as hard as the worst case, so there is a decrease in at-
tack amount as square root complexity despite the attack using the quantum
computer. However, Shor’s algorithm cannot attack our QChain construction.
The encryption algorithm and digital signature of QChain are not based on
IFP or DLP problems. Therefore, our construction is secure against Shor’s al-
gorithm. The attack complexity in a generic attack using a quantum computer
is min(O(2

n1
2 ), 20.268n2+O(n2)).

Using the classical computing attack, the hash function is secure if QChain
uses the SHA3 hash function. Therefore, we can assume that the complexity of
the hash function is O(2n1). The attack complexity of signature is 20.298n2+O(n2)

[11]. Thus, total attack complexity in a generic attack using a classical com-
puter is min(O(2n1), 20.298n2+O(n2)). However, the attack complexity of RSA
and ECDSA is O((logn)2(log logn)(log log logn)) using Shor’s algorithm [16].

4.2 Feature Analysis

PKI system is required as register key or domain, update and look up, and
revocation of the public key.

i) Connection: QChain can keep offline states except initiating genesis block.
On the other hand, X.509 v3 PKI system which is used for current inter-
national standard must keep online states in TTP-server side. If TTP of
X.509 v3 PKI system is offline, the user cannot verify that the public key is
authenticated or not.

ii) Non-repudiation: QChain has the block which consists of user’s public keys
with their signatures. The user cannot deny their public information such as
public key and user ID. X.509 v3 PKI system has a certificate which consists
of a public key, username, and signature. Therefore, the user cannot deny
their certificate.

iii) Revocation: The complexity of revocation is O(log2(n)). QChain also uses
a timestamp for each block and user’s information. By using a timestamp
for each block, the QChain operator can specify the time to expire on each
block. Since the timestamp is used for each user, the QChain operator can
determine the expiration time according to the characteristics of the user.
Compared with QChain, X.509 v3 PKI system stores revocation in the user’s
certificate. The X.509 v3 PKI system also creates and uses CRL. Similarly,
QChain can manage the revocation list by CRL.
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iv) Scalability: QChain increases linearly with scalability. Therefore, the com-
plexity is O(n). The advantage with QChain is that it does not need to
increase the number of TTP servers even if the number of users and public
information increases. However, the X.509 v3 PKI system must increase the
computing power of the server in order to add the user’s public information,
because TTP of X.509 v3 PKI system stores and authenticates the user’s
public information.

v) Trust Model: The main point of QChain is decentralized service for PKI
system. Therefore, QChain does not need TTP where X.509 v3 PKI system
must have TTP. Due to the existence of TTP, X.509 v3 PKI system has a
problem of single point failure.

4.3 Comparision with Related Work

We compare the features between our construction and related work, such as
Certcoin, IKP, and Emercoin. Table 1 shows the comparison of QChain and re-
lated work. In dependence on existing cryptocurrency system, Certcoin is based
on Namecoin, which is forked from Bitcoin. Emercoin [10] is also based on Peer-
coin. Lastly, IKP [14] is based on Ethereum smart contract platform.

Table 1. Comparison of QChain and Related Work

System QChain Certcoin [3] IKP [14] Emercoin [10]

Dependence

N
Namecoin

Ethereum
Peercoinon Existing

(fork of Bitcoin) (fork of Bitcoin)Cryptocurrency
System

Extending
Y Y N N

X.509 Certificates

Signature
GLP ECDSA ECDSA RSA

Scheme

Complexity on

20.268n+O(n) polynomial-time1 polynomial-time1 polynomial-time1Signature using
Quantum Computer

Hash Function
Not

SHA256 Ethash SHA256
Specific

Revocation Method
CRL,

Timestamp Smart Contract
Update

Timestamp by Administrator

1: O((logn)2(log logn)(log log logn))

We extend the X.509 v3 certificate with extension fields. Certcoin also ex-
tends the same approach. However, IKP and Emercoin do not use X.509 cer-
tificate. Instead, they use smart contract and makes new blocks, respectively.
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Therefore, it cannot be applied currently used PKI standard. QChain only uses
GLP digital signature scheme, which is one of the post-quantum primitives.
Other construction uses ECDSA and RSA digital signature. In other words,
Certcoin, IKP, and Emercoin are not secure against quantum adversaries. In
revocation method, our construction is based on CRL and timestamp. Utiliz-
ing CRL is the most efficient method of public key revocation. In addition, we
use the timestamp to assist CRL. Unlike our construction, Certcoin uses only
timestamps without CRL, which makes the disadvantage. Therefore, user needs
to manually update a new certificate when the user needs to revoke the public
key. IKP and Emercoin revoke by CA in the same way of current PKI standard
as a smart contract.

5 Concluding Remarks

This paper proposes QChain, which is a decentralized PKI system that uses the
blockchain technique based on the ring-LWE scheme. QChain provides a quan-
tum resistant PKI system secure against the quantum adversaries who will ap-
pear in the near future by combining the blockchain technique and one of PQC
primitives, lattice-based cryptography. Our construction uses extended X.509
certificate. Therefore, we can easily integrate current X.509 standards. For an
efficient design of QChain, we use the NTT operations in polynomial multiplica-
tion and addition. We also modify the GLP signature scheme, which is based on
the ring-LWE problem for the NTT operations. The generic attack on QChain
is described for both quantum and classical adversaries. We consider the best-
known generic attack algorithm, such as Grover’s algorithm and sphere-sieve
algorithm. Finally, we compare the currently used X.509 v3 PKI system with
our QChain in feature analysis.

As future work, several directions should be explored from here. First, we
will implement QChain as an open source project. Our implementation needs
the consensus algorithm in the validating blocks. QChain is designed to release
single-point of failure in the current X.509 v3-based key management system,
that works like a kind of decentralized PKI. Thus, QChain can fit the consortium
or private blockchain applications. In the practical implementation, SHA3 or
other secure and efficient hash functions can be considered.
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Abstract. This paper considers a new construction of a keyword search
including partial matching on an encrypted document. Typically, an
index-based searchable symmetric encryption has been investigated. How-
ever, it makes a partial keyword matching difficult without a designated
trapdoor. Thus, our objective is to propose a keyword search scheme
which enables us to search a part of a keyword only by building trapdoors
of each original keyword. The main idea is to insulate each character of
a keyword into a bitstream of the sequence generated by a cryptographi-
cally secure pseudorandom number generator. It achieves a partial search
by giving a restriction on the length of a keyword.

Keywords: searchable symmetric encryption · partial keyword match-
ing · block cipher · NTU sequence

1 Introduction

On the behind of development of information and communication technology
(ICT) society, recent cryptosystems are required to be high-functionality such as
it can search a keyword or take the sum of a certain information on an encrypted
data. The reasons for these requirements can be said that users have begun to
store their secret information in a cloud storage and a system manager wanted
to utilize the storage by a big-data analysis without any information leakage.

A searchable encryption (SE) is introduced as a solution to achieve keyword
searching without decrypting documents on a server. There are mainly two types
in the SE system; searchable symmetric encryption (SSE) [1–5] and public-key
encryption with keyword search (PEKS) [6, 7]. As the names stand, the former
is based on a symmetric-key encryption such as AES [14], and the latter is based
on a public-key encryption such as the pairing-based cryptography.

In this paper, we especially focus on SSE with a block cipher from the view-
points of the efficiency of an encryption scheme even for a huge data. The SSE
is proposed by Song in [1] and recent research on an SSE is mainly constructed
by using an index table, which associates a keyword with documents, because
of its efficiency. For example, [2] is a well know SSE scheme as an index-based

2 Y. Kodera et al.

SSE scheme, and it firstly defined the security model for the SSE. As well as the
above scheme, [4] proposed an index-based scheme and has additionally focused
on the efficient updates and compact client storage. The schemes have been paid
much attention from researchers and been widely used for the basic construc-
tion of SSEs. However, the index-based SSE has the difficulty of searching the
substring of a keyword with the same trapdoor of a usual search.

Thus, we purpose to construct an SSE scheme which allows a partial keyword
search by using the same trapdoor of a usual keyword search by adopting the
basic idea of [2]. In short, a trapdoor of a keyword is registered in an index table
which is correlated with the identifier of documents. The keyword is actually
concealed throughout the trapdoor function and a server evaluates whether a
trapdoor is involved in the table or not. However, the table makes a flexible
partial matching search difficult because the substring of a keyword is needed to
be registered in advance.

This paper proposes a new keyword search scheme for a block cipher to
achieve a partial keyword search on encrypted data. There are mainly two view-
points which we focused on. First of all, a character is represented by a combina-
tion of 8-bit in common computational systems. Secondly, a cryptographically
secure pseudorandom number generator (CSPRNG), called NTU sequence, is
considered to have advantages as a trapdoor function to allow a partial match-
ing.

Although the length of a trapdoor is always fixed with the length of a block
cipher, by making the seed value flexible, a user can easily generate a distinct
trapdoor from the same keyword. In addition, since every trapdoor is actually a
binary random sequence of the certain length, an adversary will not easily guess
which keyword is embedded in the trapdoor. The construction of a trapdoor
also helps to find a substring of a keyword without a designated trapdoor for
the substring with a restriction on the length of a keyword.

2 Preliminaries

2.1 Notations

Let a word w = (w0, w1, . . . , wn−1) of length n be a concatenation of 8-bit
characters wk (0 ≤ k < n). For a set S, let #(S) denotes the number of elements
in S. Let D andKW (Dj) denote a collection of documents and a set of keywords
in Dj , where Dj is a document in D and 0 ≤ j < #(D), respectively. The list of
every distinct keyword is written by LKW = {KW (D0), . . . ,KW (D#(D)−1)}.
The bit size of a block cipher is written by Nb throughout this paper, e.g. Nb =
128 for AES cryptosystem.

2.2 Mathematical fundamentals

Let Fp and Fpm denote a prime field and its field extension, respectively. Let θ be
a primitive element in Fpm , then every non-zero Fpm -element can be represented
by the powers of θ as θi, where 0 ≤ i ≤ pm − 2.
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Definition 1 For a set of seed values θ ∈ Fpm and i ∈ [0, pm − 2], an NTU
sequence generator PRNGNTU (θ, i) generates a bitstream sisi+1si+2 . . ., where
θ denotes a primitive element in Fpm , and si is derived by Eq.(3).

si = M2

((
Tr

(
θi
)/
p

))
. (3)

Although the PRNGNTU (θ, i) can achieve the maximum linear complexity, the
distribution of the output bits is not balanced due to the mapping functionM2(·).
Thus, a technique for uniformization has been proposed in [22] to improve the
distribution with negligibly small negative effects to the other properties.

Originally, the NTU sequence is generated by mapping {0, 1} to 0 and −1 to
1. However, this mapping induces the difference on the number of appearance of
0 and 1. For a series of trace values in Fp, the Legendre Symbol and the mapping
function play the following roles. The Legendre Symbol firstly classifies a trace
value to 0, quadratic residue (QR) and quadratic non-residue (QNR) according
to the quadratic residuosity problem. Then the mapping function binarizes the
its sequence consisted of {0, 1,−1}. It is noticed that the number of QR and
QNR in a set of non-zero prime field element Fp\{0} is the same, which is given
by p−1

2 , it is found that replacing the 0 by QR or QNR evenly when Tr (·) = 0
can induce a balanced sequence.

It replaces Tr (·) = 0 by a non-zero coefficient of the least degree of the input
θi. Here, it is noted that an element in Fpm is actually represented as an m-
dimensional vector with a basis. The procedure is illustrated in Algorithm 1,
where Coeff(θi, j) denotes the coefficient of degree j of θi.

Algorithm 1 Uniformization technique for NTU sequence

PRNGNTU (θ, i)
begin

a = Tr
(
θi
)

j = 0
while a == 0 and j <= m
a = Coeff(θi, j)
j = j + 1

end while
si = M2

((
a
/
p

))

end

In [12], a constant prime field element, denoted by A ∈ Fp, is added to the
output of Tr

(
θi
)
. In short, the generation procedure of NTU sequence has been

revised as follows:

si = M2

(((
Tr

(
θi
)
+A

)/
p

))
, (4)

where si is an i-th coefficient of the sequence for 0 ≤ i ≤ pm − 2.

Title Suppressed Due to Excessive Length 3

For an element in Fpm , let us define trace function denoted by Tr (·). The
trace function is defined as the sum of conjugates of an input as follows:

Tr (x) =

m−1∑
j=0

xpj

, (1)

where x ∈ Fpm . It is noted that the output of trace calculation always belongs
to the prime field.

Let a be a prime field element and let us define Legendre Symbol as follows:

(
a
/
p

)
= a

p−1
2 (mod p) =




0 if a = 0,

1 else if a has a square root in Fp,

−1 otherwise.

(2)

For the output of the Legendre Symbol, a mapping function M2(·) which maps
{0, 1} to 0 and −1 to 1.

2.3 Cryptographically secure pseudorandom number generator

A CSPRNG [16, 17] has been widely adopted for security applications. In this
paper, we consider using a CSPRNG to embed a keyword so that the secret-key
holder can obtain encrypted documents even if the holder sent a partial keyword.

There are several famous CSPRNGs. For example, RC4 [18] was a practical
CSPRNG which is in fact utilized to SSL and WEP. However, the security of
RC4 has been suspected and some of the applications stop using due to its
vulnerabilities [19]. Blum-Blum-Shub (B.B.S.) [20] is also a practical CSPRNG
which can efficiently generate a binary sequence over a prime field. For a product
of distinct primes p and q which satisfies p, q ≡ 3 (mod 4) denoted by N = pq,
B.B.S. outputs a pseudorandom sequence b0b1b2 . . . where bi = parity(xi) and
xi+1 = x2

i (mod N). It is found that the security of B.B.S. is supported by the
difficulty of prime factorization of a large composite number N as well as RSA.
However, the appearance of a quantum computer brings a threat to the RSA-
security. In addition, the randomness properties of B.B.S. is mainly evaluated
only by a statistical test suite such as NIST SP 800-22 [21].

On the other hand, Nogami et al. have proposed a pseudorandom number
generator called NTU sequence which randomness properties are theoretically
supported. Its advantage is the easiness to embed a keyword in a sequence.
Therefore, the NTU sequence is focused as a CSPRNG in this paper.

2.4 NTU sequence

The NTU sequence defined below is a geometric sequence generated over an odd
characteristic field which retains a provable randomness properties [12] such as
the period, the correlation, the linear complexity [11]. These properties are the
measurements of the difficulty of predicting the next bits.
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end
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revised as follows:
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Tr
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+A

)/
p

))
, (4)

where si is an i-th coefficient of the sequence for 0 ≤ i ≤ pm − 2.
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Definition 3 (Access pattern) The access pattern Access(H) induced by H is
the result of each search via a trapdoor. It is the collection of documents that
contains a keyword wk (1 ≤ k ≤ q).

Definition 4 (Search pattern) The search pattern Search(H) induced by H is
given by a symmetric binary matrix M which (j, k)-element is represented by

Mjk =

{
1 if wj = wk,

0 otherwise.
(5)

For these information, Curtmola et al. defined Trace induced by a q-query
history as follows:

Definition 5 (Trace) The Trace denoted by Trace(H) consisted of lengths of
documents in D, the access pattern Access(H), and the search pattern Search(H).

According to Curtmola et al. [2], it is said that the Trace is the minimal infor-
mation leakage, and thus the Trace becomes one of the benchmarks to evaluate
the security of an SSE scheme.

It is noted that the trace function used in the generating procedure of NTU
sequence and the above Trace is completely different idea. In detail, the former
is a mapping function for Fpm -element with respect to Fp. However, the latter
denotes a measurement of the traceability of information leakage. Thus, the
latter is written by Trace to distinguish each other.

3 Proposed keyword search scheme

3.1 Overview

A server-client model is assumed in our construction and our objective is to
enable a user to partially search a keyword without decrypting documents so
that a server cannot obtain information as small as possible. This is because of
the possibility that a malicious server tries to guess information with respect to
the stored secrets and keywords throughout queries from a user.

A keywordw = (w0, w1, . . . , wn−1) is a concatenation of characters wk, where
wk is dealt as an 8-bit character in this paper, where 1 ≤ n ≤ Nb/8 and Nb is
the bit length of the block of a block cipher. In addition, the list of keywords is
a finite set in lexicographical order which is generated from the target collection
of documents and a user searches a keyword in the list including its substring.

Let wk be an k-th character of a keyword w. The embedding function for wk

is defined by utilizing the NTU sequence PRNGNTU (θ, i) over the fixed prime
field F257 and modified trace function.

Definition 6 (Embedding function) For wk, the embedding function with NTU
sequence denoted by PRNGNTUwk

(θ, i, wk) is a deterministic function which

yields a bit by using the following modified trace calculation instead of Tr
(
θi
)
.

Trwk
(θi) = Tr

(
θi
)
+ wk (mod 257) (6)
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Then, it was found out that the period of this NTU sequence becomes longer
than the original NTU sequence. In addition, the linear complexity is experi-
mentally shown, and it has been partially proven theoretically in [13]. The result
indicates that the difficulty of predicting the next bits remains reasonably high.

By combining the uniformization technique and the result described above
including the experimental observation, a new keyword search scheme is consid-
ered with taking full advantage of NTU sequence.

2.5 Searchable Symmetric Encryption (SSE)

A searchable symmetric encryption [2–4] is the one of ideas for searching a
keyword over encrypted data. It is realized by utilizing an index table which
correlates a keyword to documents. For example, Curtmola et al. have proposed
an index-based adaptively secure SSE scheme [2].

Figure 1 simply shows an image of adaptive keyword search with an index
table. Firstly, a user scans a collection of documents to generate keywords and

Fig. 1. Illustration of an adaptive SSE scheme

builds an index with utilizing trapdoors. After that, the user encrypts documents
with a symmetric cryptosystem, and then uploads the index and encrypted doc-
uments to a server. Then, the user can search a keyword which has already
registered in the index. However, the scheme does not allow a partial matching
keyword search if a substring of a keyword is not registered in the index.

In the security of an SSE, a server which holds encrypted data is regarded
as an adversary and an SSE scheme is desired keep the information leakage
as small as possible with respect to keywords and documents. There are some
unavoidable leakage such as history, access pattern and search pattern defined
in [2]. For a document set D and a keyword w, they are defined as follows:

Definition 2 (History) A q-query History over D denoted by H = (D,w) is a
tuple of documents D and keywords w = (w1, w2, . . . , wq), which are obtained
throughout q times communication between a client and a server.
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Definition 3 (Access pattern) The access pattern Access(H) induced by H is
the result of each search via a trapdoor. It is the collection of documents that
contains a keyword wk (1 ≤ k ≤ q).

Definition 4 (Search pattern) The search pattern Search(H) induced by H is
given by a symmetric binary matrix M which (j, k)-element is represented by

Mjk =

{
1 if wj = wk,

0 otherwise.
(5)

For these information, Curtmola et al. defined Trace induced by a q-query
history as follows:

Definition 5 (Trace) The Trace denoted by Trace(H) consisted of lengths of
documents in D, the access pattern Access(H), and the search pattern Search(H).

According to Curtmola et al. [2], it is said that the Trace is the minimal infor-
mation leakage, and thus the Trace becomes one of the benchmarks to evaluate
the security of an SSE scheme.

It is noted that the trace function used in the generating procedure of NTU
sequence and the above Trace is completely different idea. In detail, the former
is a mapping function for Fpm -element with respect to Fp. However, the latter
denotes a measurement of the traceability of information leakage. Thus, the
latter is written by Trace to distinguish each other.

3 Proposed keyword search scheme

3.1 Overview

A server-client model is assumed in our construction and our objective is to
enable a user to partially search a keyword without decrypting documents so
that a server cannot obtain information as small as possible. This is because of
the possibility that a malicious server tries to guess information with respect to
the stored secrets and keywords throughout queries from a user.

A keywordw = (w0, w1, . . . , wn−1) is a concatenation of characters wk, where
wk is dealt as an 8-bit character in this paper, where 1 ≤ n ≤ Nb/8 and Nb is
the bit length of the block of a block cipher. In addition, the list of keywords is
a finite set in lexicographical order which is generated from the target collection
of documents and a user searches a keyword in the list including its substring.

Let wk be an k-th character of a keyword w. The embedding function for wk

is defined by utilizing the NTU sequence PRNGNTU (θ, i) over the fixed prime
field F257 and modified trace function.

Definition 6 (Embedding function) For wk, the embedding function with NTU
sequence denoted by PRNGNTUwk

(θ, i, wk) is a deterministic function which

yields a bit by using the following modified trace calculation instead of Tr
(
θi
)
.

Trwk
(θi) = Tr

(
θi
)
+ wk (mod 257) (6)
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3.3 Trapdoor function based on NTU sequence

For a keyword w = (w0, w1, . . . , wn−1), a trapdoor of w is derived by the fol-
lowing steps.

Step 1. Set j = 0 and θi.

Step 2. Calculate a sequence of trace values (trj,0, . . . , trj,7) by Trwk
(θi+8j+k),

where trj,k is an output of trace calculation and 0 ≤ k < 8.

Step 3. Generate a bitstream for every j and k by si+8j+k = M2

((
trj,k/257

))
and concatenating the previous bitstream.

Step 4. If j < n, then return to Step. 2. Otherwise go to the next step.

Step 5. If the length of the bitstream is less than the bit size Nb of a block of a
block cipher, then generate an NTU sequence until the bitstream reaches the
length Nb by PRNGNTU (θ, i+j) with utilizing the uniformization technique
introduced in Section 2.4, where 8n ≤ j < Nb.

Step 6. Taking bit-wise XOR with s0s1 . . . sNb−1 and a secret-key Ktrpdr. Fi-
nally, output a trapdoor t.

The above procedure is also illustrated in Figure 2, where kj and tj are j-th
bit of Ktrpdr and t, respectively. In short, the NTU sequence in this procedure
works as a mapping function from an 8-bit space to an another 8-bit space. In
addition, this generation scheme gives a redundancy for a trapdoor of a key-
word. The redundancy means that a trapdoor easily becomes a different one by
changing θi.

3.4 Partial matching

As shown in Figure 3, PerfectMatch(t) can find a trapdoor t from the header of
an encrypted document by taking bit-wise XOR and evaluating whether tj⊕t =
0 or not, where tj denotes a j-th trapdoor of a keyword.

Since a trapdoor is built as a binary sequence of length Nb, a user has to
uniquely select the binary sequence from Nb dimensional binary vector space
when the user searches a keyword.

Although the idea of the partial matching is similar to the perfect matching,
PartialMatch(t) does not evaluate the whole length of a trapdoor. The function
checks the first 8l-bit patterns of a trapdoor with the header of a document
where l is the length of a substring of a keyword. Thus, it returns a collection of
ciphers that may be contained the substring of a keyword or the keyword itself.
The probability of matching is given by

Pr[t = tj ] =

(
1

28

)l

, (7)

where tj is a trapdoor in the header of a cipher. In this sense, it can be said that
l is a control parameter for the function to enhance the correctness of matching.
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3.2 Definition

A keyword search scheme, which allows a partial matching, is consisted of six
polynomial-time algorithms defined below.

Definition 7 (Generate secrets) The function GenSec(m) returns a set of se-
crets including a secret-key for a block cipher. It takes a positive integer m as
the input such that λ = 257m−1

128 becomes sufficiently large (e.g. more than 2256),
where λ is the period of an NTU sequence. Then, GenSec(m) generates a primi-
tive polynomial f(x) of degree m over F257, a seed value pair (θ, i), a secret-key
Ktrpdr for the trapdoor function and a secret-key KSKE for a block cipher, where
f(θ) = 0 and 0 ≤ i ≤ 257m − 2. It is noted that the size of the secret-key Ktrpdr

is the same as KSKE.

Definition 8 (Trapdoor) The trapdoor function Trpdr(θ, i,w,Ktrpdr) is a de-
terministic algorithm run by a client. It requires seed values θ and an integer i, a
word w = (w0, w1, . . . , wn−1) of length n and the secret-key Ktrpdr as the input.
Trpdr(θ, i,w,Ktrpdr) returns the binary sequence t of the same size of a block
of a block cipher, which involves the keyword w as the trapdoor of the keyword.

Definition 9 (Encryption) The function EncKSKE
(θ, i,D,KSKE) is a deter-

ministic algorithm run by the secret-key holder. It takes a seed values θ and i,
a collection of documents D, and the secret-key KSKE as the input. Firstly, the
function begins to scan every document to list up the distinct keywords LKW

contained in the documents. Then, a trapdoor of a keyword in LKW is prepared
by utilizing NTU sequence with θi. Finally, the documents are encrypted by a
typical encryption scheme with KSKE and the trapdoors are concatenated to
each document which contains the keyword as the header. It is noted that the
number of trapdoors is required to be memorized for the decryption. The simplest
way is fixing the number of trapdoors to the maximum number of keywords in a
document.

Definition 10 (Perfect matching search) The function PerfectMatch(t) is car-
ried out on the server with a trapdoor t as the input. It returns encrypted docu-
ments, which are believed to involve the keyword, based on the high reliability.

Definition 11 (Partial matching search) The function PartialMatch(t) is car-
ried out on the server with a trapdoor t as the input. It returns encrypted docu-
ments, which are considered to contain the substring of a keyword.

Definition 12 (Decryption) The function Dec(Denc,KSKE) recovers documents
with the typical decryption scheme after eliminating each header of an encrypted
document. Since the secret-key holder knows how many trapdoors are concate-
nated to a document, the user can remove the header just ignoring them. The
input are a collection of encrypted documents Denc and the secret-key KSKE.
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3.3 Trapdoor function based on NTU sequence

For a keyword w = (w0, w1, . . . , wn−1), a trapdoor of w is derived by the fol-
lowing steps.

Step 1. Set j = 0 and θi.

Step 2. Calculate a sequence of trace values (trj,0, . . . , trj,7) by Trwk
(θi+8j+k),

where trj,k is an output of trace calculation and 0 ≤ k < 8.

Step 3. Generate a bitstream for every j and k by si+8j+k = M2

((
trj,k/257

))
and concatenating the previous bitstream.

Step 4. If j < n, then return to Step. 2. Otherwise go to the next step.

Step 5. If the length of the bitstream is less than the bit size Nb of a block of a
block cipher, then generate an NTU sequence until the bitstream reaches the
length Nb by PRNGNTU (θ, i+j) with utilizing the uniformization technique
introduced in Section 2.4, where 8n ≤ j < Nb.

Step 6. Taking bit-wise XOR with s0s1 . . . sNb−1 and a secret-key Ktrpdr. Fi-
nally, output a trapdoor t.

The above procedure is also illustrated in Figure 2, where kj and tj are j-th
bit of Ktrpdr and t, respectively. In short, the NTU sequence in this procedure
works as a mapping function from an 8-bit space to an another 8-bit space. In
addition, this generation scheme gives a redundancy for a trapdoor of a key-
word. The redundancy means that a trapdoor easily becomes a different one by
changing θi.

3.4 Partial matching

As shown in Figure 3, PerfectMatch(t) can find a trapdoor t from the header of
an encrypted document by taking bit-wise XOR and evaluating whether tj⊕t =
0 or not, where tj denotes a j-th trapdoor of a keyword.

Since a trapdoor is built as a binary sequence of length Nb, a user has to
uniquely select the binary sequence from Nb dimensional binary vector space
when the user searches a keyword.

Although the idea of the partial matching is similar to the perfect matching,
PartialMatch(t) does not evaluate the whole length of a trapdoor. The function
checks the first 8l-bit patterns of a trapdoor with the header of a document
where l is the length of a substring of a keyword. Thus, it returns a collection of
ciphers that may be contained the substring of a keyword or the keyword itself.
The probability of matching is given by

Pr[t = tj ] =

(
1

28

)l

, (7)

where tj is a trapdoor in the header of a cipher. In this sense, it can be said that
l is a control parameter for the function to enhance the correctness of matching.
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Fig. 3. An image of storing data on a server

Table 1. An example of embedding an alphabet to NTU sequence with ASCII code

a 01111110 A 00010001 j 10110000 J 11010010 s 00001101 S 10011000

b 01011010 B 01000111 k 11111010 K 10010101 t 00010000 T 10001000

c 11001010 C 10110100 l 11000111 L 10110100 u 11010111 U 11011110

d 10011100 D 00011001 m 00001000 M 01001110 v 01001111 V 00110000

e 11000111 E 10000001 n 11111011 N 11000111 w 01101111 W 00001000

f 01010110 F 00000001 o 01010011 O 01000110 y 01011110 Y 11011111

g 11110010 G 00011101 p 00100101 P 10100100 x 00101100 X 10100001

h 10000000 H 11101111 q 11011011 Q 10101000 z 01011110 Z 00100001

i 10110001 I 11110111 r 01110011 R 00001101

4.2 Comparison of the required data size

Fig. 4 illustrates the total number of substrings for each length of keywords
when adopting AES for a block cipher, where 1 ≤ n ≤ Nb/8. It shows that
the proposed method can carry out a partial search with maximumly one-eighth
storage than the conventional index-based construction. This property enables
us to implement the SSE scheme with low memory consumption.

4.3 Security

The proposed scheme has both positive and negative aspects comparing to [2].
The negative aspects are that the size of trapdoor becomes larger and the ef-
ficiency on searching is sacrificed. However, one of the most meaningful contri-
butions of this work is the realization of partial keyword search by using the
same trapdoor. Although a header size is increased from an original file size,
fortunately, it conceal the original file size from a malicious server.

Let us consider the probability of a collision of trapdoors. As shown in Ta-
ble 1, each character is mapped into an 8-bit binary via the NTU sequence
independently. Thus, the probability for w and w′ of length n is given by

Pr[Trpdr(θ, i,w) = Trpdr(θ, i,w′)] =

(
1

28

)n

. (8)
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Fig. 2. Behavior of the trapdoor function for a keyword w.

3.5 Secure update

Every header of documents is needed to be updated when a user wants to add a
keyword. The secure update in our construction is recommended to remake the
trapdoors with a different seed value set (θ, i). This is because of the flexibility
of a trapdoor function, which means it can generate another trapdoor from
the same keyword. Therefore, it is expected that the property is considered to
prevent an adversary from stealing information about keywords and documents.

4 Considerations

4.1 An example of embedding

A numerical example of embedding a character to NTU sequence. Table 1 de-
notes an example of sequences of length 8 when embedding an alphabet to NTU
sequence with ASCII code. Here, it is noted that the results in the table are just
calculating PRNGNTUwk

(θ, i, wk), where i = 0, 1, . . . , 7 and wk is each character
represented by ASCII code. As the result shows, a character seems to be able to
distinguish each other even after embedding in an NTU sequence.
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Fig. 3. An image of storing data on a server

Table 1. An example of embedding an alphabet to NTU sequence with ASCII code

a 01111110 A 00010001 j 10110000 J 11010010 s 00001101 S 10011000

b 01011010 B 01000111 k 11111010 K 10010101 t 00010000 T 10001000

c 11001010 C 10110100 l 11000111 L 10110100 u 11010111 U 11011110

d 10011100 D 00011001 m 00001000 M 01001110 v 01001111 V 00110000

e 11000111 E 10000001 n 11111011 N 11000111 w 01101111 W 00001000

f 01010110 F 00000001 o 01010011 O 01000110 y 01011110 Y 11011111

g 11110010 G 00011101 p 00100101 P 10100100 x 00101100 X 10100001

h 10000000 H 11101111 q 11011011 Q 10101000 z 01011110 Z 00100001

i 10110001 I 11110111 r 01110011 R 00001101

4.2 Comparison of the required data size

Fig. 4 illustrates the total number of substrings for each length of keywords
when adopting AES for a block cipher, where 1 ≤ n ≤ Nb/8. It shows that
the proposed method can carry out a partial search with maximumly one-eighth
storage than the conventional index-based construction. This property enables
us to implement the SSE scheme with low memory consumption.

4.3 Security

The proposed scheme has both positive and negative aspects comparing to [2].
The negative aspects are that the size of trapdoor becomes larger and the ef-
ficiency on searching is sacrificed. However, one of the most meaningful contri-
butions of this work is the realization of partial keyword search by using the
same trapdoor. Although a header size is increased from an original file size,
fortunately, it conceal the original file size from a malicious server.

Let us consider the probability of a collision of trapdoors. As shown in Ta-
ble 1, each character is mapped into an 8-bit binary via the NTU sequence
independently. Thus, the probability for w and w′ of length n is given by

Pr[Trpdr(θ, i,w) = Trpdr(θ, i,w′)] =

(
1

28

)n

. (8)
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Thus, a failure at keyword search decreases in proportion to the increase of n.
Due to the page limitation, the more detailed security including about infor-

mation leakage throughout our search scheme is omitted in this work.

5 Conclusion

We proposed a construction of a keyword search scheme which allows a partial
matching search without registering a designated trapdoor of the substring of
a keyword. It is realized by embedding each character of a keyword to an 8-bit
binary sequence using a CSPRNG of NTU sequence. This is because of the ease
of embedding an 8-bit character and the flexibility as trapdoor function. The
sequences are concatenated to a ciphertext and are used for searching. Since a
trapdoor is generated by taking the full advantage of the generation procedure
of the CSPRNG, the randomness and the flexibility are quite high.

Although the security of the proposed method is discussed with the viewpoint
of difficulty of collision of keywords, the formal description of security proof is
still left for our future work.
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Abstract. In this paper, we revisited the previous LEA and HIGHT
implementations on the low-end embedded processors. First, the general
purpose registers are fully utilized to cache the intermediate results of
delta variable during key scheduling process of LEA. By caching the delta
variables, the number of memory access is replaced to the relatively cheap
register access. Similarly, the master key and plaintext are cached dur-
ing key scheduling and encryption of HIGHT block cipher, respectively.
Second, stack storage and pointer are fully utilized to store the interme-
diate results and access the round keys. This approach solves the limited
storage problem and saves one general purpose register. Third, indirect
addressing mode is more efficient than indexed addressing mode. In the
decryption process of LEA, the round key pair is efficiently accessed
through indirect addressing with minor address modification. Fourth,
8-bit word operations for HIGHT is efficiently handled by 16-bit wise
instruction of 16-bit MSP processors. Finally, the proposed LEA imple-
mentations on the representative 8-bit AVR and 16-bit MSP processors
are fully evaluated in terms of code size, RAM and execution timing. The
proposed implementations over the target processors (8-bit AVR proces-
sor, 16-bit MSP processor) are faster than previous works by (13.6%,
9.3%), (0.6%, 8.5%), and (3.4%, 1.5%) for key scheduling, encryption,
and decryption, respectively. Similarly, the proposed HIGHT implemen-
tations on the 16-bit MSP processors are faster than previous works by
38.6%, 33.7%, and 33.6% for key scheduling, encryption, and decryption,
respectively.

Keywords: LEA, HIGHT, AVR, MSP, Software Implementation

1 Introduction

In WISA’13, Lightweight Encryption Algorithm (LEA) was announced by the
Attached Institute of ETRI [4]. Unlike previous Substitute Permutation Net-
work (SPN) block ciphers, LEA algorithm follows simple Addition Rotation
XOR (ARX) architecture which shows high speed computations in software and
hardware implementations. Furthermore, the implementation is a regular fash-
ion, which is secure against timing attack. In ICISC’13, LEA implementations on
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high-end ARM-NEON and GPGPU platforms are introduced [11]. The works
present efficient parallel implementations in Single Instruction Multiple Data
(SIMD) and Single Instruction Multiple Thread (SIMT). In WISA’15, low-end
8-bit AVR processor is also evaluated [10]. The author presented speed and size
optimized LEA implementation techniques for 8-bit AVR processors and com-
pared the performance with representative ARX block ciphers, including SPECK
and SIMON. The work proved that LEA is the most optimal block cipher for em-
bedded environments. In WISA’16, both ARM and NEON instruction sets are
fully utilized in interleaved way [12]. The work showed the interleaved approach
efficiently hides the pipeline stalls between ARM and NEON instruction sets.
Recently, block cipher competition is held by Luxembourg University (FELICS
Triathlon). Many light-weight block ciphers are submitted and finally LEA and
HIGHT implementations achieved the efficient block cipher implementations for
Internet of Things (IoT) by considering three factors, including RAM, ROM,
and execution timing [6]. The descriptions of compact LEA implementations
are well described in [9]. In CHES’06, lightweight block cipher, HIGHT, was
introduced [5]. The HIGHT block cipher consists of simple 8-bit wise ARX op-
erations. The lightweight implementations were also reported in [9]. As listed
above, many works have proved that LEA and HIGHT block ciphers are the
promising block ciphers for both high-end computers and low-end microproces-
sors. However, still there are large room to improve the performance for 8-bit
AVR and 16-bit MSP processors. In this paper, we re-visit previous results of
LEA and HIGHT implementations on the 8-bit AVR and 16-bit MSP processors

The remainder of this paper is organized as follows. In Section 2, we recap
the basic specifications of LEA and HIGHT block ciphers, FELICS triathlon,
and target 8-bit AVR and 16-bit MSP processors. In Section 3, we present the
compact implementations of LEA and HIGHT block ciphers on 8-bit AVR and
16-bit MSP processors. In Section 4, we evaluate the performance of proposed
methods in terms of code size, RAM, and execution timing. Finally, Section 5
concludes the paper.

2 Related Works

2.1 LEA Block Cipher

In WISA 2013, Lightweight Encryption Algorithm (LEA) was announced by the
Attached Institute of ETRI [4]. The LEA block cipher only consists of simple
Addition-Rotation-XOR (ARX) operations, which replaces the expensive S-box
operations. These lightweight features are appropriate to achieve the high perfor-
mance for both software and hardware platforms. Furthermore, ARX operations
are secure against timing attack and simple power analysis.

2.2 HIGHT Block Cipher

In CHES’06, lightweight HIGHT block cipher was introduced [5]. HIGHT block
cipher also consists of ARX operations and supports 64-bit block size and 128-
bit key size. The basic operations are 8-bit wise addition, rotation, and XOR,
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arithmetic instruction incurs one clock cycle, and memory instructions or 8-bit
multiplication incurs two processing cycles. The detailed instructions are given in
Table 2. Previous 8-bit microprocessor results showed that LEA is estimated to
run at around 3,040 cycles for encryption on AVR AT90USB82/162 where AES
best record is 1,993 cycles [4, 7]. The paper does not explore the specific LEA
implementation techniques, but we assume that they used the separated mode
to optimize performance in terms of speed by considering high performance. In
case of AES encryption, they used the conventional lookup-based approach to
reduce memory consumption [7]. The lookup tables are the forward and inverse
S-boxes in total 512 bytes, because 32-bit look-up table access is not favorable
for the low-end processors due to the limited storages. S-box pointer is always
placed in Z register and the variable is stored into SRAM for fast access speed.
For the efficient mix-column computation, a left shift with conditional branch to
skip the bit-wise exclusive-or operation is established. Finally, the MixColumns
step is implemented without the use of lookup tables as a series of register copies,
XOR operations, taking a total of 26 cycles. The InvMixColumns step is imple-
mented in a similar way, but it is more complicated routines, which takes a total
of 42 cycles.

2.5 16-bit Embedded Platform MSP

Table 3. Instruction set summary for MSP

asm Operands Description Operation #Clock

ADD Rr, Rd Add without Carry Rd ← Rd+Rr 1

XOR Rr, Rd Exclusive OR Rd ← Rd⊕Rr 1

RLA Rd Logical Shift Left C|Rd ← Rd<<1 1

RLC Rd Rotate Left Through Carry C|Rd ← Rd<<1||C 1

The MSP430 is a representative 16-bit embedded processor board with a
clock frequency of 8∼16MHz, 32∼48KB of flash memory, 10KB of RAM, and
12 general purpose registers from r4 to r15 available [3]. Since these registers
share pointer and user defined registers, the number of registers are much con-
strained than 8-bit AVR processors. The device also provides various arithmetics
supporting full functions of ARX operations (See Table 3).

In [2], the implementation is based on the byte-oriented version, but the
author has modified it to take advantage of the 16-bit platform. The first change
was to improve the AddRoundKey function computing the bit-wise exclusive-
or of 128-bit blocks in order to bit-wise exclusive-or 16-bit words at a time.
The second change was to improve the use of 16-bit friendly lookup tables. The
Subbytes, Shiftrows and Mixcolumns steps are combined in a single computation.
This is well known 32-bit optimization of using precomputed tables with 256

LEA and HIGHT on AVR and MSP 3

Table 1. First and second winners of FELICS triathlon (Block Size/Key Size)

Rank First Triathlon Second Triathlon

1 LEA (128/128) HIGHT (64/128)

2 SPECK (64/96) Chaskey (128/128)

3 Chaskey (128/128) SPECK (64/128)

and the number of round is 32. HIGHT block cipher is particularly efficient for
low-end device and hardware implementations.

2.3 FELICS Triathlon

In 2015, the open-source software benchmarking framework named Fair Evalua-
tion of Lightweight Cryptographic Systems (FELICS) was held by Luxembourg
University. This is similar to SUPERCOP benchmark framework but the system
is particularly targeting for low-end embedded processors, which are widely used
in IoT and M2M services. Total three different platforms, including 8-bit AVR,
16-bit MSP, and 32-bit ARM, were selected and three different metrics, such as
execution time, RAM, and code size were evaluated. The implementations are
evaluated in three different scenarios including cipher operation, communica-
tion protocol, and challenge-handshake authentication protocol. In the FELICS
Triathlon, more than one hundred different implementations of block and stream
ciphers are submitted by world-wide researchers. In the competition, LEA won
first triathlon and HIGHT won second triathlon (See Table 1). The other block
ciphers, including SPECK and Chaskey, also show the competitive performance
on low-end processors [1, 6].

2.4 8-bit Embedded Platform AVR

Table 2. Instruction set summary for AVR

asm Operands Description Operation #Clock

ADD Rd, Rr Add without Carry Rd ← Rd+Rr 1

EOR Rd, Rr Exclusive OR Rd ← Rd⊕Rr 1

LSL Rd Logical Shift Left C|Rd ← Rd<<1 1

ROL Rd Rotate Left Through Carry C|Rd ← Rd<<1||C 1

The 8-bit AVR embedded processor is equipped with an ATmega128 8-bit
processor clocked at 7.3728 MHz. It has a 128 KB EEPROM chip and 4 KB
RAM chip. The ATmega128 processor has RISC architecture with 32 registers.
Among them, 6 registers (r26 ∼ r31) serve as the special pointers for indirect ad-
dressing. The remaining 26 registers are available for arithmetic operations. One
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arithmetic instruction incurs one clock cycle, and memory instructions or 8-bit
multiplication incurs two processing cycles. The detailed instructions are given in
Table 2. Previous 8-bit microprocessor results showed that LEA is estimated to
run at around 3,040 cycles for encryption on AVR AT90USB82/162 where AES
best record is 1,993 cycles [4, 7]. The paper does not explore the specific LEA
implementation techniques, but we assume that they used the separated mode
to optimize performance in terms of speed by considering high performance. In
case of AES encryption, they used the conventional lookup-based approach to
reduce memory consumption [7]. The lookup tables are the forward and inverse
S-boxes in total 512 bytes, because 32-bit look-up table access is not favorable
for the low-end processors due to the limited storages. S-box pointer is always
placed in Z register and the variable is stored into SRAM for fast access speed.
For the efficient mix-column computation, a left shift with conditional branch to
skip the bit-wise exclusive-or operation is established. Finally, the MixColumns
step is implemented without the use of lookup tables as a series of register copies,
XOR operations, taking a total of 26 cycles. The InvMixColumns step is imple-
mented in a similar way, but it is more complicated routines, which takes a total
of 42 cycles.

2.5 16-bit Embedded Platform MSP

Table 3. Instruction set summary for MSP

asm Operands Description Operation #Clock

ADD Rr, Rd Add without Carry Rd ← Rd+Rr 1

XOR Rr, Rd Exclusive OR Rd ← Rd⊕Rr 1

RLA Rd Logical Shift Left C|Rd ← Rd<<1 1

RLC Rd Rotate Left Through Carry C|Rd ← Rd<<1||C 1

The MSP430 is a representative 16-bit embedded processor board with a
clock frequency of 8∼16MHz, 32∼48KB of flash memory, 10KB of RAM, and
12 general purpose registers from r4 to r15 available [3]. Since these registers
share pointer and user defined registers, the number of registers are much con-
strained than 8-bit AVR processors. The device also provides various arithmetics
supporting full functions of ARX operations (See Table 3).

In [2], the implementation is based on the byte-oriented version, but the
author has modified it to take advantage of the 16-bit platform. The first change
was to improve the AddRoundKey function computing the bit-wise exclusive-
or of 128-bit blocks in order to bit-wise exclusive-or 16-bit words at a time.
The second change was to improve the use of 16-bit friendly lookup tables. The
Subbytes, Shiftrows and Mixcolumns steps are combined in a single computation.
This is well known 32-bit optimization of using precomputed tables with 256
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Table 5. 32-bit rotations on 8-bit AVR by 3-bit offsets, where X1 ∼ X4 are data
registers and T is temporal register [9]

without bst/bld with bst/bld

CLR T

Iteration #3{
LSR X4

ROR X3

ROR X2

ROR X1

ROR T }

EOR X4, T

Iteration #3{
BST X1, 0

LSR X4

ROR X3

ROR X2

ROR X1

BLD X4, 7 }

17 cycles 18 cycles

16 and 8 general purpose registers are assigned to the plaintext and temporal
storages, respectively. The callee-saved register pair (R28,R29) is not used, which
saves 2 bytes and 8 clock cycles for PUSH and POP instructions. The rotation
operations are implemented in techniques of Table 4 and 5. The decryption
process is reversed order of encryption. Main difference is round key access. The
last index of round key is accessed and decremented to the first index. With this
order of round key, the ciphertext is decrypted to the plaintext.

3.2 Optimization of LEA for 16-bit MSP Processors

The 32-bit addition operation on 16-bit MSP is implemented with two 16-bit
addition instructions (add, addc). The 32-bit exclusive-or operation is imple-
mented with two 16-bit exclusive-or instructions (xor). The optimized rotation
techniques on 16-bit MSP are covered in [8, 9]. The optimized rotations are de-
scribed in Table 6. For 8-bit left rotation, swpb and xor instructions are utilized.
The swpb instruction performs byte-wise swap operation on the 16-bit variable,
which exchanges the 8-bit values between lower and higher parts. Afterward,
three xor instructions extract the swapped results. For 8-bit right rotation, the
opposite routine of left rotation is required. For 1-bit right rotation, the bit

instruction is used to check the least significant bit of the lower register (X2) and
set the carry flag. Afterward the carry flag is updated to the most significant bit
of the higher register (X1).

Key Scheduling Unlike 8-bit AVR processor, 16-bit MSP processor only equips
12 general purpose registers. For this reason, the register utilization is more
important than AVR processor. 8, 1, and 3 general purpose registers are assigned
to master key, delta variable address pointer, and temporal storages, respectively.
However, additional 9 general purpose registers for counter and delta variables

LEA and HIGHT on AVR and MSP 5

Table 4. 32-bit rotations on 8-bit AVR, where Z and T are zero and temporal registers
[9]

≪ 1 ≪ 8 ≪ 16 (≫ 16) ≫ 8 ≫ 1
LSL X1

ROL X2

ROL X3

ROL X4

ADC X1, Z

MOV T, X4

MOV X4, X3

MOV X3, X2

MOV X2, X1

MOV X1, T

MOV T, X1

MOV X1, X3

MOV X3, T

MOV T, X2

MOV X2, X4

MOV X4, T

MOV T, X1

MOV X1, X2

MOV X2, X3

MOV X3, X4

MOV X4, T

BST X1, 0

LSR X4

ROR X3

ROR X2

ROR X1

BLD X4, 7
5 cycles 5 cycles 6 cycles 5 cycles 6 cycles

elements method. They exploited this for 16-bit version and it costs around 2
KB rather than 4 KB, conventional approach requires.

3 Proposed Method

3.1 Optimization of LEA for 8-bit AVR Processors

For LEA implementation on 8-bit AVR, 32-bit ARX operations with the 8-bit
instructions should be optimized. The 32-bit addition in 8-bit instruction can be
implemented in four consecutive 8-bit addition instructions (add, adc). Simi-
larly, the 32-bit exclusive-or operation is implemented with four 8-bit exclusive-
or instructions (eor). For the 32-bit rotation operations, assembly-level opti-
mizations are required to get a small code size and fast execution timing. The
optimized rotations are described in Table 4 [9].

In addition, the special right rotation offset by 3-bit is optimized through
the special routine by 1 clock cycle (See Table 5). Instead of bit selection (bst
and bld), the rotation bits are cached in temporal registers and applied to the
destination register at last. This approach even reduces the 1 line of code size in
each round.

Key Scheduling The key scheduling process generates the round key from
master key and delta variables. For the high performance implementation, the
number of memory access should be optimized. 128-bit master keys are reserved
in the 16 general purpose registers. The part of delta variable (32-bit) are also
reserved in the 4 general purpose registers, which are directly utilized when the
delta variables are required. The remaining delta variables (96-bit) are loaded
and stored again in the stack storages to avoid the overwriting of original delta
variables in the memory.

Encryption & Decryption The encryption process consists of 24 rounds.
Since same process is iterated in every 4 rounds, the length of loop is set to 4.
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Table 5. 32-bit rotations on 8-bit AVR by 3-bit offsets, where X1 ∼ X4 are data
registers and T is temporal register [9]

without bst/bld with bst/bld

CLR T

Iteration #3{
LSR X4

ROR X3

ROR X2

ROR X1

ROR T }

EOR X4, T

Iteration #3{
BST X1, 0

LSR X4

ROR X3

ROR X2

ROR X1

BLD X4, 7 }

17 cycles 18 cycles

16 and 8 general purpose registers are assigned to the plaintext and temporal
storages, respectively. The callee-saved register pair (R28,R29) is not used, which
saves 2 bytes and 8 clock cycles for PUSH and POP instructions. The rotation
operations are implemented in techniques of Table 4 and 5. The decryption
process is reversed order of encryption. Main difference is round key access. The
last index of round key is accessed and decremented to the first index. With this
order of round key, the ciphertext is decrypted to the plaintext.

3.2 Optimization of LEA for 16-bit MSP Processors

The 32-bit addition operation on 16-bit MSP is implemented with two 16-bit
addition instructions (add, addc). The 32-bit exclusive-or operation is imple-
mented with two 16-bit exclusive-or instructions (xor). The optimized rotation
techniques on 16-bit MSP are covered in [8, 9]. The optimized rotations are de-
scribed in Table 6. For 8-bit left rotation, swpb and xor instructions are utilized.
The swpb instruction performs byte-wise swap operation on the 16-bit variable,
which exchanges the 8-bit values between lower and higher parts. Afterward,
three xor instructions extract the swapped results. For 8-bit right rotation, the
opposite routine of left rotation is required. For 1-bit right rotation, the bit

instruction is used to check the least significant bit of the lower register (X2) and
set the carry flag. Afterward the carry flag is updated to the most significant bit
of the higher register (X1).

Key Scheduling Unlike 8-bit AVR processor, 16-bit MSP processor only equips
12 general purpose registers. For this reason, the register utilization is more
important than AVR processor. 8, 1, and 3 general purpose registers are assigned
to master key, delta variable address pointer, and temporal storages, respectively.
However, additional 9 general purpose registers for counter and delta variables
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cess (36 clock cycles) are required. By using manual offset correction, 10 16-bit
indirect and 4 offset correction (24 clock cycles) are required.

3.3 Optimization of HIGHT for 16-bit MSP Processors

The basic word size of HIGHT block cipher is 8-bit wise. For this reason, straight-
forward implementation of HIGHT on 16-bit MSP is inefficient. In this section,
we explore the efficient 8-bit wise operations for 16-bit instructions of MSP pro-
cessors

Key Scheduling In the key scheduling process, 12 general purpose registers are
utilized. In particular, 8, 1, 1, 1, and 1 general purpose registers are assigned to
master key variables, round key pointer, delta pointer, master key pointer, and
loop counter, respectively. The master key pointer and loop counter are also used
for temporal storages by pushing the data into the stack. The most expensive
operation of key scheduling process is the update of delta variable. The detailed
delta update is as follows.

δi+6 ← δi+2 ⊕ δi−1

The delta update requires bit-wise computations, which is inefficient for byte-
wise platforms. For this reason, we used LUT-based approach to accelerate the
performance. Another consideration is efficient 8-bit word handling for 16-bit
MSP processors. The input/output length of LUT is 8-bit and memory access is
expensive. In order to reduce the number of LUT accesses, 2 8-bit LUT results
are loaded at once and used with post-processing. The detailed descriptions of
round key generation are given in Algorithm 1. The round key generation requires
addition of delta variable and master key. In Step 1, lower part of master key
(M0) is moved to TMP1. In Step 2, 16-bit delta variable pair is loaded to TMP2. In
Step 3 and 4, master key and delta variable is added and stored to the round key
(RP). Similarly, from Step 5, higher part of master key (M0) and delta variable
(TMP2) are prepared by using SWPB instruction. Finally, higher part is also stored
to the round key (RP).

In each round key generation, the offset of master key is rotated by one.
In the proposed implementation, two 8-bit master keys are stored in the 16-bit
register and 8-bit wise rotation is inefficient for this alignment. For this reason,
two rounds are directly performed and then the offset is updated by 2-word as
follows.

MOV M3, TMP1 → MOV M2, M3 → MOV M1, M2 → MOV M0, M1 → MOV TMP1, M0

MOV M7, TMP1 → MOV M6, M7 → MOV M5, M6 → MOV M4, M5 → MOV TMP1, M4

LEA and HIGHT on AVR and MSP 7

Table 6. 32-bit rotations on 16-bit MSP, where T is temporal register [9]

≪ 1 ≪ 8 ≪ 16 (≫ 16) ≫ 8 ≫ 1
RLA X2

RLC X1

ADC X2

SWPB X1

SWPB X2

MOV.B X1, T

XOR.B X2, T

XOR T, X1

XOR T, X2

MOV X1, T

MOV X2, X1

MOV T, X1

MOV.B X1, T

XOR.B X2, T

XOR T, X1

XOR T, X2

SWPB X1

SWPB X2

BIT #1, X2

RRC X1

RRC X2

3 cycles 6 cycles 3 cycles 6 cycles 4 cycles

are required. In order to resolve the limited number of registers, stack pointer
(R1) is utilized. Particularly, 128-bit delta variables, counter, and address pointer
for round key are stacked and restored whenever the values are required in the
code.

Encryption & Decryption The register utilization of encryption process is
also important on 16-bit MSP processor. 8, 1, and 3 general purpose registers
are assigned to plaintext, round key address pointer, and temporal storages. The
counter variable is not stored in the register so the variable is stored in the stack.
In LEA encryption, 6 32-bit round keys are required in each round. Among them,
three round keys share same round key. This shows that only 4 round keys are
required to perform the LEA encryption. However, MSP processor only provides
very limited number of general purpose registers and four round keys cannot be
reserved in the 3 16-bit registers. For this reason, part of 16-bit shared round
key is reserved in the one register and the two registers are used to load the
remaining round keys. In the straight-forward implementation, 8 16-bit indirect
and 4 16-bit indexed memory access (28 clock cycles) are required1. By using
cached round key, 8 16-bit indirect and 2 16-bit indexed memory access (22 clock
cycles) are required. The rotation operations are performed by using Table 6.
Four rounds are implemented and iterated by 6 times to complete the 24 rounds.

Decryption step is reversed order of encryption operation and the ARX op-
erations of decryption step can be performed by following encryption step. The
main difference is memory access pattern. The encryption routine accesses the
round keys from the first to the last round keys. However, the decryption routine
accesses the round keys from the last to the first round keys. Furthermore, MSP
processor only supports incremental memory access and does not support decre-
mental memory access. For the optimized memory access, the memory address
offset is manually calculated. First, the offset is calculated. Second, the mem-
ory address is accessed by using indirect memory address mode in incremental
order. In the straight-forward implementation, 12 16-bit indexed memory ac-

1 indirect memory access requires 2 clock cycles and indexed memory access requires
3 clock cycles.
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cess (36 clock cycles) are required. By using manual offset correction, 10 16-bit
indirect and 4 offset correction (24 clock cycles) are required.

3.3 Optimization of HIGHT for 16-bit MSP Processors

The basic word size of HIGHT block cipher is 8-bit wise. For this reason, straight-
forward implementation of HIGHT on 16-bit MSP is inefficient. In this section,
we explore the efficient 8-bit wise operations for 16-bit instructions of MSP pro-
cessors

Key Scheduling In the key scheduling process, 12 general purpose registers are
utilized. In particular, 8, 1, 1, 1, and 1 general purpose registers are assigned to
master key variables, round key pointer, delta pointer, master key pointer, and
loop counter, respectively. The master key pointer and loop counter are also used
for temporal storages by pushing the data into the stack. The most expensive
operation of key scheduling process is the update of delta variable. The detailed
delta update is as follows.

δi+6 ← δi+2 ⊕ δi−1

The delta update requires bit-wise computations, which is inefficient for byte-
wise platforms. For this reason, we used LUT-based approach to accelerate the
performance. Another consideration is efficient 8-bit word handling for 16-bit
MSP processors. The input/output length of LUT is 8-bit and memory access is
expensive. In order to reduce the number of LUT accesses, 2 8-bit LUT results
are loaded at once and used with post-processing. The detailed descriptions of
round key generation are given in Algorithm 1. The round key generation requires
addition of delta variable and master key. In Step 1, lower part of master key
(M0) is moved to TMP1. In Step 2, 16-bit delta variable pair is loaded to TMP2. In
Step 3 and 4, master key and delta variable is added and stored to the round key
(RP). Similarly, from Step 5, higher part of master key (M0) and delta variable
(TMP2) are prepared by using SWPB instruction. Finally, higher part is also stored
to the round key (RP).

In each round key generation, the offset of master key is rotated by one.
In the proposed implementation, two 8-bit master keys are stored in the 16-bit
register and 8-bit wise rotation is inefficient for this alignment. For this reason,
two rounds are directly performed and then the offset is updated by 2-word as
follows.

MOV M3, TMP1 → MOV M2, M3 → MOV M1, M2 → MOV M0, M1 → MOV TMP1, M0

MOV M7, TMP1 → MOV M6, M7 → MOV M5, M6 → MOV M4, M5 → MOV TMP1, M4

The 19th World Conference on Information Security Applications

-271-



10 Hwajeong Seo, Kyuhwang An, and Hyeokdong Kwon

Algorithm 2: 1 round of HIGHT encryption using F0 and F1 LUTs

Input: plaintext registers (A0, A1,

..., A7), F0 pointer (F0P), F1
pointer (F1P), temporal register
(TMP), round key pointer (RP)

Output: plaintext registers (A0, A1,

..., A7)
1: MOV F1P, TMP

2: ADD A0, TMP

3: MOV.B @TMP, TMP

4: XOR.B 0(RP),TMP

5: ADD.B TMP, A1

6: MOV F0P, TMP

7: ADD A2, TMP

8: MOV.B @TMP, TMP

9: ADD.B 1(RP),TMP

10: XOR.B TMP, A3

11: MOV F1P, TMP

12: ADD A4, TMP

13: MOV.B @TMP, TMP

14: XOR.B 2(RP),TMP

15: ADD.B TMP, A5

16: MOV F0P, TMP

17: ADD A6, TMP

18: MOV.B @TMP, TMP

19: ADD.B 3(RP),TMP

20: XOR.B TMP, A7

This evaluation was based on the scenario of FELICS framework. The FELICS
framework considers three scenarios, namely cipher operation, communication
protocol, and challenge-handshake authentication protocol. Among them, we
selected the cipher operation (i.e. scenario 0) to measure the performance of
encryption and decryption operations. Scenario 0 evaluates the performance of
the round key generation, encryption, and decryption for a single block. The
results include the implementation of speed optimized assembly. The detailed
descriptions are given in Table 7.

In 8-bit AVR processor, the proposed implementation achieved the highest
performance among previous LEA implementations. Particularly, key schedul-
ing, encryption, and decryption requires 203, 167, and 170 clock cycles/byte and
enhances the performance by 13.6%, 0.6%, and 3.4%, respectively. Interestingly,
the proposed implementation requires smaller RAM size than previous works
since it only utilized the 16 callee-saved registers. For the code size, encryption
and decryption operations achieved the 8 and 14 bytes smaller than previous
works. For the key scheduling routine, previous works by [9] implemented only
single round of key scheduling. However, the proposed work utilized the cached
delta value and four rounds are implemented. For this reason, the size of key
scheduling is larger than previous works but this achieved the highest perfor-
mance and for the 128KB processor, 0.5KB is not high overheads. Similarly, in
16-bit MSP430 processor, the proposed LEA implementation achieved 175, 118,
and 127 clock cycles for key scheduling, encryption, and decryption, respectively,
which shows that the proposed implementations are faster than previous works
by 9.3%, 8.5%, and 1.5%, respectively. Only code size of key scheduling achieved
lower performance but other factors are better than previous works.

LEA and HIGHT on AVR and MSP 9

Algorithm 1: Round key generation with 2 8-bit LUT access on MSP

Input: first and second master key pair (M0), delta variable pointer (DP),
temporal registers (TMP1, TMP2)

Output: round key pointer (RP)
1: MOV.B M0, TMP1

2: MOV @DP+, TMP2

3: ADD.B TMP2, TMP1

4: MOV.B TMP1, 0(RP)

5: MOV M0, TMP1

6: SWPB TMP1

7: SWPB TMP2

8: ADD.B TMP2, TMP1

9: MOV.B TMP1, 1(RP)

Encryption & Decryption In the encryption operation, 12 general purpose
registers are utilized. In particular, 8, 1, 1, 1, and 1 general purpose registers are
assigned to plaintext, round key pointer, plaintext pointer, F0 function pointer,
and F1 function pointer. The plaintext point is used for both temporal storage
and loop counter by pushing the data into the stack. The expensive operations
are F0 and F1 functions as follows.

F0=X≪1 ⊕ X≪2 ⊕ X≪7

F1=X≪3 ⊕ X≪4 ⊕ X≪6

The functions consists of XOR and rotation operations, which can be written
in 2 256-byte pre-computed tables. In each round, four times of LUT accesses
are required. The detailed descriptions of one round computation is given in
Algorithm 2. In order to reduce the number of memory accesses, all plaintext
variables are loaded to the 16-bit registers in 8-bit wise. The round key access is
performed in byte wise since the number of temporal register is not enough to
retain the round keys. The encryption round is performed with the F0/F1 LUT
accesses and byte-wise XOR and addition operations. 8 rounds of encryption
codes are written and iterated by 4 times to complete the 32 rounds. Similarly,
the decryption round is performed in reversed order of encryption operation.

4 Evaluation

We evaluated LEA and HIGHT implementations on representative processors
that are commonly used in IoT devices, namely 8-bit AVR and 16-bit MSP pro-
cessors. The performance on the low-end devices (AVR and MSP) was evaluated
in terms of code size (byte), RAM (byte), and execution time (clock cycle). In Ta-
ble 7, the performance evaluation of LEA and HIGHT block ciphers is presented.
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Algorithm 2: 1 round of HIGHT encryption using F0 and F1 LUTs

Input: plaintext registers (A0, A1,

..., A7), F0 pointer (F0P), F1
pointer (F1P), temporal register
(TMP), round key pointer (RP)

Output: plaintext registers (A0, A1,

..., A7)
1: MOV F1P, TMP

2: ADD A0, TMP

3: MOV.B @TMP, TMP

4: XOR.B 0(RP),TMP

5: ADD.B TMP, A1

6: MOV F0P, TMP

7: ADD A2, TMP

8: MOV.B @TMP, TMP

9: ADD.B 1(RP),TMP

10: XOR.B TMP, A3

11: MOV F1P, TMP

12: ADD A4, TMP

13: MOV.B @TMP, TMP

14: XOR.B 2(RP),TMP

15: ADD.B TMP, A5

16: MOV F0P, TMP

17: ADD A6, TMP

18: MOV.B @TMP, TMP

19: ADD.B 3(RP),TMP

20: XOR.B TMP, A7

This evaluation was based on the scenario of FELICS framework. The FELICS
framework considers three scenarios, namely cipher operation, communication
protocol, and challenge-handshake authentication protocol. Among them, we
selected the cipher operation (i.e. scenario 0) to measure the performance of
encryption and decryption operations. Scenario 0 evaluates the performance of
the round key generation, encryption, and decryption for a single block. The
results include the implementation of speed optimized assembly. The detailed
descriptions are given in Table 7.

In 8-bit AVR processor, the proposed implementation achieved the highest
performance among previous LEA implementations. Particularly, key schedul-
ing, encryption, and decryption requires 203, 167, and 170 clock cycles/byte and
enhances the performance by 13.6%, 0.6%, and 3.4%, respectively. Interestingly,
the proposed implementation requires smaller RAM size than previous works
since it only utilized the 16 callee-saved registers. For the code size, encryption
and decryption operations achieved the 8 and 14 bytes smaller than previous
works. For the key scheduling routine, previous works by [9] implemented only
single round of key scheduling. However, the proposed work utilized the cached
delta value and four rounds are implemented. For this reason, the size of key
scheduling is larger than previous works but this achieved the highest perfor-
mance and for the 128KB processor, 0.5KB is not high overheads. Similarly, in
16-bit MSP430 processor, the proposed LEA implementation achieved 175, 118,
and 127 clock cycles for key scheduling, encryption, and decryption, respectively,
which shows that the proposed implementations are faster than previous works
by 9.3%, 8.5%, and 1.5%, respectively. Only code size of key scheduling achieved
lower performance but other factors are better than previous works.
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number of memory accesses by using cached approach. This enhances the perfor-
mance over the 8-bit AVR processor by 13.6%, 0.6%, and 3.4% for key scheduling,
encryption, and decryption, respectively. The performance gain is also observed
on the 16-bit MSP processor by 9.3%, 8.5%, and 1.5% for key scheduling, encryp-
tion, and decryption, respectively. Similarly, the proposed HIGHT implementa-
tions on the 16-bit MSP processors are faster than previous works by 38.6%,
33.7%, and 33.6% for key scheduling, encryption, and decryption, respectively.
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Table 7. Comparison results of LEA and HIGHT block ciphers on 8-bit AVR and
16-bit MSP in terms of code size (byte), RAM (byte), and execution time (clock cycle
/ byte)

Impl.

Code size RAM Execution time

(bytes) (bytes) (cycles per byte)

EKS ENC DEC SUM EKS ENC DEC EKS ENC DEC

LEA–AVR

[4] - - - - - - - - 190 -

[10] - 924 - - - 592 - - 169 -

[9] 520 862 890 2,272 467 433 433 235 168 176

This Work 1,068 854 876 2,798 444 416 416 203 167 170

LEA–MSP

[9] 314 650 654 1,618 456 440 440 193 129 129

This Work 830 596 650 2,076 450 416 416 175 118 127

HIGHT–MSP

[9] 402 1,134 1,138 2,162 290 676 676 119 222 223

This Work 448 520 526 1,494 296 674 674 73 147 148

For the case of HIGHT block cipher, the proposed approach achieved the
highest performance among them. The proposed implementation fully utilized
the general purpose registers to cache the master key and plaintext/ciphertext for
key scheduling and encryption/decryption operations. Particularly, 2 8-bit words
delta variables are loaded and finely re-ordered to reduce the number of memory
access for key scheduling. The proposed HIGHT implementation achieved 73,
147, and 148 clock cycles for key scheduling, encryption, and decryption, respec-
tively, which shows that the proposed implementations are faster than previous
works by 38.6%, 33.7%, and 33.6%, respectively.

5 Conclusion

One of the biggest challenges for Internet of Thing (IoT) is establishing the
secure communications between resource constrained embedded processors. In
order to ensure secure and robust transactions, we should conduct the encryp-
tion operation on sensitive and important information. In this paper, we explore
the optimal implementations pursuing high speed and small memory footprint
for the LEA and HIGHT block ciphers. This paper particularly concerned on the
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number of memory accesses by using cached approach. This enhances the perfor-
mance over the 8-bit AVR processor by 13.6%, 0.6%, and 3.4% for key scheduling,
encryption, and decryption, respectively. The performance gain is also observed
on the 16-bit MSP processor by 9.3%, 8.5%, and 1.5% for key scheduling, encryp-
tion, and decryption, respectively. Similarly, the proposed HIGHT implementa-
tions on the 16-bit MSP processors are faster than previous works by 38.6%,
33.7%, and 33.6% for key scheduling, encryption, and decryption, respectively.
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Abstract. Bitcoin depends on Peer-to-Peer (P2P) network in a major
way and shares the connecting IP address list with the nearest peer. In
addition, the blockchain which is the basic technology can be accessed by
anyone, and the transaction stored in the block can be checked anytime.
Recent research has reported that anonymity of such a bitcoin P2P net-
work is low, regardless of whether peer uses the anonymizers like TOR
to keep the anonymity. This fact shows the risk of the malicious users
being able to use this public information without exception. However,
when the malicious user is hiding behind the network and browsing pub-
lic information, it is difficult to distinguish between a malicious user and
a honest one, and it is a challenge to detect signs of hidden threats. In
this research, we propose a data mining approach to analyze by combin-
ing two kinds of IP address distributions: Bitcoion peer and malicious
node (not in the bitcoin network), in order to obtain characteristics of
hidden users. As a result, we confirmed that the nodes, which matched
the first 24 bits of the IP address in the bitcoin network peer, sent the
packet to the darknet. The contribution of this paper is three-fold: (1)
we employ a novel approach to analyze a bitcoin network using Darknet
dataset, (2) we identify the malicious node in the same network as the
honest peer, and (3) we clarify the network deployments of Bitcoin peers
and malicious nodes.

Keywords: Darknet analysis · Bitcoin · cybersecurity.

1 Introduction

In recent years, Bitcoin is attracting attention as a rapidly expanding service
on the network. Bitcoin is a system based on Peer-to-Peer (P2P) network and
Blockchain which created by volunteers according to a whitepaper [22] released
by anonymous authors ”Satoshi Nakamoto”. Since it is a system using innovative
technologies such as blockchain, it has been widely researched as an interesting
topic in the academic field [6].

In a survey [14] focused on anonymity of Bitcoin, researchers classify review
papers into three different categories, which is Blockchain analysis, Traffic anal-
ysis, and Mixing. Blockchain analysis means analyzing transaction information
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When a peer restarts the service, it queries the peer that succeeded in the con-
nection.
Connecting to Peers. After an initiator discovers the destination peer, it tries
to establish the TCP connection to the destination using the network port num-
ber 8333. When the TCP connection is successful, a version message including
the version number of the communication protocol, block information and cur-
rent time is transmitted to the initiator. Because the peer at the connection
destination responds with the verack message and the version message, it trans-
mits a verack message and establishes the connection. When a connection is then
established between peers, the initator sends an addr message (peer information
including its own IP address) and a getaddr message (a request for another
peer’s IP address list) to the peer at the connection destination. This allows
the peer to find a new peer to connect, and it can inform other peers that the
peer has newly joined the bitcoin network. A peer always maintains an outgoing
connection with eight peers and can keep up to 125 connections with in-between
connections from peers. In the case of the no-action peer that has not sent a
message for more than 30 minutes among connected peers, the peer sends a ping
message and checks the activation status of the adjacent peer. When the peer
activation status cannot be confirmed and 90 minutes have elapsed, the peer
regards the connection as disconnected and removes it from the connection list.
Besides checking the activation status, the initiator also sent the addr message
to the peer when receiving a getaddr message, or sending an addr message at
24-hour intervals.

An important knowledge is that a peer communicates with only the peers
which is described in its own IP address list. Therefore, it usually doesn’t start
communicating with peers that don’t appear in the list. If there are peers that
initiate communication, we can consider the possibility of a threatening peer.
Also, we know that one threat in the bitcoin network is a small group such as a
botnet. This group poses different threats depending on the purpose.

Huanget et al. [15] reports a comprehensive survey on mining bots used for
mining applications. The mining bot exploits CPU resources without realizing
it. Heilman et al. [13] report the eclipse attack on bitcoin P2P network using
bots that undermines bitcoin’s core security guarantees, allowing attacks on the
mining and consensus system, including N-confirmation double spending and
adversarial forks in the blockchain. In contrary to other researches which try-
ing to earn profits directly with bots, several researches are considering a case
of indirectly attacking by damaging the trust of the system. Neudecker et al.
[20] reports a simulation model for analysis of attacks on the bitcoin P2P net-
work. It discusses the concept of attacks and the motivation of attackers by
simulation. According to this report, the attacker’s peer can behaves in the at-
tack phase to increase the probability of connecting with honest nodes. The
target of such attacks is primarily personal information. In [21], researchers as-
sess whether combining blockchain and network information may facilitate the
clustering process. According to this report, only a small share of clusters is
conspicuously associated with a single IP address. Also, only a small number

2 Mitsuyoshi Imamura and Kazumasa Omote

recorded in a distributed managed ledger on a bitcoin network. Transaction anal-
ysis (network analysis) means analyzing a bitcoin network composed of P2P. The
analyzed data includes the network traffic transmitted through the bitcoin P2P
network and the IP address information of the peer. Mixing means a technique
to shuffle the relationship between the senders address and the receiver address
in order to increase anonymity of the system. Although network analysis is a
challenging work, it is quite important by the paper [14]. In a relatively-recent
research [21] using dataset such as the bitcoin P2P network traffic or blockchain
transaction, clustering and characterization based on public information reduce
anonymity and break the privacy of Bitcoin users. Therefore, it is important to
detect signs of malicious users.

In order to collect signs of malicious users, there is a method of deploying
a trap-based monitoring system that collects abnormal communication on the
network. “The darknet sensor” is one of the basic monitoring system [9, 23, 4].
The darknet means the IP address space which can be routed and not assigned
to the host. The darknet sensor is used for research to detect malicious users.

In this research, we focused on using the two different IP address distributions
and analyzed the characteristics of threats latent on a port-basis using darknet
sensor and bitcoin user’s IP address. The contribution of this paper is three-fold:
(1) we employ a novel approach to analyze a bitcoin network using Darknet
dataset, (2) we identify the malicious node in the same network as the honest
peer, and (3) we clarify the network deployments of Bitcoin peers and malicious
nodes.

The remaining articles are organized as follows: Section 2 illustrates the back-
ground of the technology and the review of related literature, Section 3 reports
the research method used and analysis results. Thereafter Section 4 discusses
the results. Finally, the conclusion is described in Section 5.

2 Background and Related Work

This section provides an overview of bitcoin network and darknet, and then
summarizes the latest research trends.

2.1 Bitcoin network

In order to help understand our approach, we first explain the mechanism of the
bitcoin network to link the analysis using darknet sensor dataset and the bitcoin
network. Bitcoin maintains P2P networks around the world with two important
mechanisms, “Peer Discovery” and “Connecting to Peers”.

Those mechanisms are as follows:

Peer Discovery. In the initial peer connection, in order to discover active peers,
the non-connecting peer (initiator) queries the domain lists which called hard-
coded DNS seeds managed by Bitcoin community members. If there is no re-
sponse within 60 seconds, it queries the domain lists using hard-coded IP address.
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When a peer restarts the service, it queries the peer that succeeded in the con-
nection.
Connecting to Peers. After an initiator discovers the destination peer, it tries
to establish the TCP connection to the destination using the network port num-
ber 8333. When the TCP connection is successful, a version message including
the version number of the communication protocol, block information and cur-
rent time is transmitted to the initiator. Because the peer at the connection
destination responds with the verack message and the version message, it trans-
mits a verack message and establishes the connection. When a connection is then
established between peers, the initator sends an addr message (peer information
including its own IP address) and a getaddr message (a request for another
peer’s IP address list) to the peer at the connection destination. This allows
the peer to find a new peer to connect, and it can inform other peers that the
peer has newly joined the bitcoin network. A peer always maintains an outgoing
connection with eight peers and can keep up to 125 connections with in-between
connections from peers. In the case of the no-action peer that has not sent a
message for more than 30 minutes among connected peers, the peer sends a ping
message and checks the activation status of the adjacent peer. When the peer
activation status cannot be confirmed and 90 minutes have elapsed, the peer
regards the connection as disconnected and removes it from the connection list.
Besides checking the activation status, the initiator also sent the addr message
to the peer when receiving a getaddr message, or sending an addr message at
24-hour intervals.

An important knowledge is that a peer communicates with only the peers
which is described in its own IP address list. Therefore, it usually doesn’t start
communicating with peers that don’t appear in the list. If there are peers that
initiate communication, we can consider the possibility of a threatening peer.
Also, we know that one threat in the bitcoin network is a small group such as a
botnet. This group poses different threats depending on the purpose.

Huanget et al. [15] reports a comprehensive survey on mining bots used for
mining applications. The mining bot exploits CPU resources without realizing
it. Heilman et al. [13] report the eclipse attack on bitcoin P2P network using
bots that undermines bitcoin’s core security guarantees, allowing attacks on the
mining and consensus system, including N-confirmation double spending and
adversarial forks in the blockchain. In contrary to other researches which try-
ing to earn profits directly with bots, several researches are considering a case
of indirectly attacking by damaging the trust of the system. Neudecker et al.
[20] reports a simulation model for analysis of attacks on the bitcoin P2P net-
work. It discusses the concept of attacks and the motivation of attackers by
simulation. According to this report, the attacker’s peer can behaves in the at-
tack phase to increase the probability of connecting with honest nodes. The
target of such attacks is primarily personal information. In [21], researchers as-
sess whether combining blockchain and network information may facilitate the
clustering process. According to this report, only a small share of clusters is
conspicuously associated with a single IP address. Also, only a small number
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Fig. 2. Behavior of an honest Bitcoin peer (left) and a malicious node (right)

used in the following researches: 1). probes or scanning activities due to worms,
bots and other automated exploit tools; 2). DDoS attacks due to victims reply
(backscatter) packets to spoofed IP addresses; 3). other activities such as mis-
configuration and political events. In a systematic summary of darknet research
[10], the research subjects of the Darknet are categorized into three categories:
1). development and setup of the darknet (development), 2). measurement and
analysis of the darknet data by the deployed sensor (packet analysis), 3). in
tools and techniques for visualization and representation of packets (visualiza-
tion). Our study is categorized in 2). Also, various large-scale projects [2, 24,
25] are active in the darknet, and then the dataset used in this research is pro-
vided by the Network Incident analysis Center for Tactical Emergency Response
(NICTER) project [16, 17] which is one of them. Survey studies [12, 10] report
that the data set of NICTER project is used for anti-malware research, and the
research results [9, 23, 4] is actively published. The current research [3] reports
that this dataset attracts attention as a research targets such as big data and
data mining.

3 Analysis and Results

In this section, we analyze by combining two kinds of IP address distributions:
Bitcoion peer and non-Bitcoin malicious node, in order to obtain characteristics
of hidden users.

3.1 Network service port based mapping

Fig.2 shows the service port based behavior of the bitcoin peer and non-Bitcoin
malicious node using the darknet sensor. The inner circle shows a bitcoin net-
work where the bitcoin peer exists and the external circle represents the other
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・ ・ ・

Fig. 1. Darknet sensor on network

of IP addresses shows a conspicuous association with a single cluster. Bojja et
al. [5] reports the practical anonymity attacks on bitcoin network. According to
this work, in the current network, there are enemies such as botnets that do spy
activities linking users with transactions. This problem is not unique to Bitcoin:
Many spinoff cryptocurrencies (known as altcoins) use similar technologies and
thus suffer from the same lack of anonymity in their P2P networks. The Bitcoin
community responds to these problems as appropriate.

2.2 Darknet

For the word “darknet” used in this research, we can mainly refer to two mean-
ings. One is an unauthorized network formed by servers and programs used for
trading illegal drugs and personal information. This includes technologies and
services involved in illegal acts such as anonymous communication protocols such
as TOR [8] or BitTorrent [7]. The other is the name of a packet addressed to a
routable and unassigned IP address and is used to generate various cyber threat
information such as scanning activity, distributed denial of service attack (DDoS
attack) and, malware identification [10]. Since Bitcoin is sometimes used as a
currency of illegal transactions, it is often related to the meaning of the former
such as described in the previous research [19], however, in this research, it is
referred to as the meaning of the last one.

One of the effective way to monitor Internet activity is to employ passive
monitoring using sensors or traps such as darknet [16, 10]. A trap based mon-
itoring system is deployed in the network to collect malicious activities. The
darknet is one of them, and it is a network sensor acting in passive mode. Fig.1
shows the darknet sensor does not respond when a request packet is sent to IP
addresses in the darknet. Previous research [10] reports that the darknet has been
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Fig. 2. Behavior of an honest Bitcoin peer (left) and a malicious node (right)

used in the following researches: 1). probes or scanning activities due to worms,
bots and other automated exploit tools; 2). DDoS attacks due to victims reply
(backscatter) packets to spoofed IP addresses; 3). other activities such as mis-
configuration and political events. In a systematic summary of darknet research
[10], the research subjects of the Darknet are categorized into three categories:
1). development and setup of the darknet (development), 2). measurement and
analysis of the darknet data by the deployed sensor (packet analysis), 3). in
tools and techniques for visualization and representation of packets (visualiza-
tion). Our study is categorized in 2). Also, various large-scale projects [2, 24,
25] are active in the darknet, and then the dataset used in this research is pro-
vided by the Network Incident analysis Center for Tactical Emergency Response
(NICTER) project [16, 17] which is one of them. Survey studies [12, 10] report
that the data set of NICTER project is used for anti-malware research, and the
research results [9, 23, 4] is actively published. The current research [3] reports
that this dataset attracts attention as a research targets such as big data and
data mining.

3 Analysis and Results

In this section, we analyze by combining two kinds of IP address distributions:
Bitcoion peer and non-Bitcoin malicious node, in order to obtain characteristics
of hidden users.

3.1 Network service port based mapping

Fig.2 shows the service port based behavior of the bitcoin peer and non-Bitcoin
malicious node using the darknet sensor. The inner circle shows a bitcoin net-
work where the bitcoin peer exists and the external circle represents the other
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Fig. 3. The amount of daily total packets for 8333/tcp port, reached to the darknet

3.2 Network analysis of the combining two kinds of IP address lists

A darknet sensor dataset has the IP address lists of senders which scans the
Internet using 8333/tcp port. On the other hand, Bitcoin peer has the IP address
lists of peer in the bitcoin network. Therefore, combining the above two kinds
of IP address lists, we can acquire a new feature of the IP address in the bitcoin
network. This approach is classified as a data mining method using two kinds
IP address information.

Table 2 shows the relationship between the nodes sending the packet to the
darknet and the peers on the bitcoin network in more detail. Bitcoin peers mean
the number of the daily unique peer of accessible IPv4 addresses using 8333/tcp
port on the “Bitcoin network” in Table 2 during the period from Mar. 1, 2018
to May. 31, 2018. “The Malicious peers” means the number of the daily unique
peer sending packets to the darknet in the same period. “First 24 bit match
(IPv4)” represents the number of peers that the peer matches the third octet
of the IP address in the bitcoin network peer, in the same period. As a result,
we confirm that the peer, which matches the third octet of the IP address in
the bitcoin network peer, send the packets to the darknet, and these peers are
classified into two types. The outline of classification is shown in Fig.4.

The first 24 bit of IP address (IPv4) in one non-Bitcoin malicious node is the
same as the bitcoin peer and these two nodes have a sequential number, for the
whole period. In the another case, the first 24 bits of IP address (IPv4) is the
same and they are on the network.
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Table 1. Our analyzed results from the network service ports of the top 10 ranked in
the bitcoin network. The “# of peers” means the daily averages of the number of the
peer and “% of peers” means the ratio.

open port number # of peers % of peers

8333 10451.24 95.60%
8334 61.71 0.56%
8555 56.64 0.52%
8338 23.16 0.21%
28333 12.68 0.12%
8335 10.93 0.10%
11080 9.57 0.09%
8341 9.28 0.08%
9001 8.98 0.08%
18333 8.76 0.08%
8433 7.76 0.07%

networks. The darknet sensors are hidden in the other networks. The honest
Bitcoin peer is shown in the left figure, whose peer communicates only with the
peers that exist in the bitcoin network, but doesn’t communicate with other
networks. On the other hand, the non-Bitcoin malicious node is shown in the
right figure, when the malicious node tries to communicate regardless whether
or not the Bitcoin peer exists. Therefore, there is a possibility for malicious node
to communicate with a darknet sensor that was deployed as a trap on the other
networks.

When conducting port-based analysis, we confirm that the default Bitcoin
port (8333/tcp) is used as the service port in the bitcoin network. Table 1 shows
the results of examining the ports used by the IPv4 address peers on the bitcoin
network that can be accessed during the period from Mar. 1, 2018 to May. 31,
2018, using the data obtained from Bitnodes [1].

In this result, we find that more than 95% peers are using the default 8333/tcp
port. The 8333/tcp port is not the well-known port numbers which are used in
general applications. Therefore, it is reasonable to consider the 8333/tcp port as a
Bitcoin port when conducting the port-based analysis. Then we confirm whether
or not there is communication with the 8333/tcp port of the darknet sensor. We
evaluate datasets collected at the darknet sensors hosted by NICTER [16] from
Mar. 1, 2018 to May. 31, 2018. Fig.3 shows the total packet amount per day for
the 8333/tcp port that reached the darknet sensor. In particular, we would like
to pay attention to this result by Fig.3. This figure means that packets which are
never reached can be observed by darknet sensor from a certain point of time.
The red vertical line refers to Feb. 24, 2014, which means that Mt.Gox(bitcoin
exchange) went bankruptcy. From the figure, this day is a change point where a
lot of packets becomes to reach to the darknet. We found that a certain packet
started to reach the darknet, which is appeared as a spike.
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Fig. 3. The amount of daily total packets for 8333/tcp port, reached to the darknet

3.2 Network analysis of the combining two kinds of IP address lists

A darknet sensor dataset has the IP address lists of senders which scans the
Internet using 8333/tcp port. On the other hand, Bitcoin peer has the IP address
lists of peer in the bitcoin network. Therefore, combining the above two kinds
of IP address lists, we can acquire a new feature of the IP address in the bitcoin
network. This approach is classified as a data mining method using two kinds
IP address information.

Table 2 shows the relationship between the nodes sending the packet to the
darknet and the peers on the bitcoin network in more detail. Bitcoin peers mean
the number of the daily unique peer of accessible IPv4 addresses using 8333/tcp
port on the “Bitcoin network” in Table 2 during the period from Mar. 1, 2018
to May. 31, 2018. “The Malicious peers” means the number of the daily unique
peer sending packets to the darknet in the same period. “First 24 bit match
(IPv4)” represents the number of peers that the peer matches the third octet
of the IP address in the bitcoin network peer, in the same period. As a result,
we confirm that the peer, which matches the third octet of the IP address in
the bitcoin network peer, send the packets to the darknet, and these peers are
classified into two types. The outline of classification is shown in Fig.4.

The first 24 bit of IP address (IPv4) in one non-Bitcoin malicious node is the
same as the bitcoin peer and these two nodes have a sequential number, for the
whole period. In the another case, the first 24 bits of IP address (IPv4) is the
same and they are on the network.
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Fig. 4. IP address pattern of the Bitcoin peers sending the packets to the darknet

to less overhead or resources and then are reduced the bandwidth consumption.
However, previous researches [11, 18] report that SPV wallets are not safe against
attack. In the attack purposes case, we can guess that it is an attack classified
as an eclipse attack requiring reboots as reported in the previous research [13].
We think that a TCP SYN flooding is chosen as a means of restarting.

Then, we confirm the activity status of the current malicious peers. We ob-
served that several nodes sent packets to the darknet. Especially, it is interesting
that the node exists on the same network as the bitcoin peer. Fig.5 shows the
network deployment information on the fourth octet of the peer’s IP address
which matches to the first 24 bits on the bitcoin network, on May. 31, 2018.
Note that we don’t describe the concrete positions of the fourth octet because
of anonymity of peers. From these results, we found the four patterns in the
arrangement of peers. “Network 1” is the case that the existing bitcoin peer’s IP
address and malicious node’s IP address have a sequential number. “Network 2”
is the case that the IP address of the node and peer are the most distant at the
subnet level. “Network 3” is the case that the IP addresses of the node and peer
are allocated at the same subnet level. Finally “Network 4” is the case that the
IP addresses of the node and peer are allocated at the nearest subnet level. In
Network 1 and 3, there is a possibility that the nearest Bitcoin peer is related to
a malicious node. Furthermore, in Network 1, 2, 3 and 4, there is a possibility
that the node which is located inside the firewall managed by the organization
is infected with malware and then tries to search a peer in the hot standby.
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Table 2. The relationship between the peers sending the packet to the darknet and
the peers on the bitcoin network

Mar-18 Apr-18 May-18

Bitcoin Malicious First 24 bit Bitcoin Malicious First 24 bit Bitcoin Malicious First 24 bit
Day peers peers match (IPv4) peers peers match (IPv4) peers peers match (IPv4)

1 13830 24 6 12784 30 6 12099 85 6
2 14005 29 6 12684 30 6 12044 29 6
3 13742 27 6 12858 82 6 12096 27 5
4 13564 35 9 12805 25 6 12086 29 6
5 13704 21 6 12831 27 6 12024 33 6
6 13926 80 6 12881 28 6 11936 29 6
7 13352 24 6 12803 27 6 12189 27 6
8 12959 22 6 12744 49 6 11999 83 6
9 13900 26 6 12876 29 6 12075 26 6
10 14190 24 6 12940 84 6 12015 24 6
11 14151 25 6 12787 22 6 12092 30 6
12 14180 24 4 12714 26 6 11894 26 6
13 14493 88 4 12575 29 6 11900 46 8
14 14715 23 6 12168 29 6 11954 27 6
15 14855 63 6 12106 31 6 12102 78 6
16 12962 29 6 12146 28 6 11940 27 6
17 13464 242 6 12075 81 6 11843 34 6
18 14317 38 6 12163 29 6 11805 26 6
19 14347 246 6 12134 26 6 11675 30 6
20 14390 298 6 12112 29 6 11630 33 6
21 14100 152 5 12066 25 6 11723 34 6
22 14050 287 6 12089 28 6 11795 86 6
23 14138 285 6 12113 28 6 11695 31 6
24 14169 1346 7 12066 82 6 11626 33 6
25 13931 1322 11 12136 28 6 11349 32 6
26 14332 1576 7 12141 31 6 11301 30 6
27 14343 471 6 12151 25 6 11137 29 6
28 13809 33 6 12052 30 6 11606 24 6
29 14518 33 6 11936 25 6 11610 87 6
30 14028 173 6 11976 31 6 11590 30 6
31 13335 28 6 11528 34 6

4 Discussion

In this section, we deeply discuss our results in the previous session. We focus on
the change point which was observed in the darknet sensor described in Fig.3,
and the current existing peer IP address on the bitcoin network.

We consider that this changing point makes the malicious user motivated to
search for bitcoin peers to attack. We consider that this changing point makes the
malicious user motivated to search or attack for bitcoin peers. We consider that
steady packets are for scaning purposes, and abnormally packets are for attack
purposes. However it is difficult to classify them with this information alone. In
the scanning purposes case, it may be possible for such searching to become a
guide to find the new compromised point of the malicious user. For example,
there are two types of wallets that the user uses, “Bitcoin core” and “Simplified
payment verification (SPV)”. Bitcoin core requires the high cost to store the
big block. As compared to Bitcoin core, SPV wallets are gaining popularity due
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Fig. 4. IP address pattern of the Bitcoin peers sending the packets to the darknet

to less overhead or resources and then are reduced the bandwidth consumption.
However, previous researches [11, 18] report that SPV wallets are not safe against
attack. In the attack purposes case, we can guess that it is an attack classified
as an eclipse attack requiring reboots as reported in the previous research [13].
We think that a TCP SYN flooding is chosen as a means of restarting.

Then, we confirm the activity status of the current malicious peers. We ob-
served that several nodes sent packets to the darknet. Especially, it is interesting
that the node exists on the same network as the bitcoin peer. Fig.5 shows the
network deployment information on the fourth octet of the peer’s IP address
which matches to the first 24 bits on the bitcoin network, on May. 31, 2018.
Note that we don’t describe the concrete positions of the fourth octet because
of anonymity of peers. From these results, we found the four patterns in the
arrangement of peers. “Network 1” is the case that the existing bitcoin peer’s IP
address and malicious node’s IP address have a sequential number. “Network 2”
is the case that the IP address of the node and peer are the most distant at the
subnet level. “Network 3” is the case that the IP addresses of the node and peer
are allocated at the same subnet level. Finally “Network 4” is the case that the
IP addresses of the node and peer are allocated at the nearest subnet level. In
Network 1 and 3, there is a possibility that the nearest Bitcoin peer is related to
a malicious node. Furthermore, in Network 1, 2, 3 and 4, there is a possibility
that the node which is located inside the firewall managed by the organization
is infected with malware and then tries to search a peer in the hot standby.
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Fig. 5. The network deployments on the fourth octet (IPv4) of bitcoin and malicious
peer on May. 31, 2018

5 Conclusion

In this research, we focused on the behavior of malicious node trying to connect
excessively for information gathering and analyzed signs of threats latent on a
port basis using Darknet observation information. As a result, we confirmed that
the node which matched the first 24 bits of the IP address in the bitcoin network
peer, sent the packets to the darknet, in which there were sequential IP number
nodes.

The contribution of this paper is three-fold: First, in order to obtain the
information which is not obtained only by the normal behaviour of bitcoin net-
work, we proposed a new data mining approach to analyze bitcoin network using
darknet which detects abnormal behaviour. Then, as a result of classification ac-
cording to the location of IP addresses, malicious nodes were classified in the
same network area as the bitcoin peer. Finally, we clarified the mapping charac-
teristics in the network area of honest and malicious nodes.

As a future work: (1) In the darknet sensor, since only the scanning packets
are confirmed, we would like to confirm more detailed information on communi-
cation by analyzing the traffic-based data after establishing the TCP connection;
(2) Instead of researching the malicious node directly, we can analyze the char-
acteristics of near-peers at the subnet level.
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