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ABSTRACT 
This study develops a model to predict the 
concentration of difficult-to-measure (DTM) 
radionuclides using a machine learning-based 
XGBoost (XGB) method, leveraging the Electric 
Power Research Institute (EPRI) database. A dataset 
comprising four input variables, considered easy-to-
measure (ETM) radionuclides, including plant 
number (PLT) and the concentrations of 60Co, 137Cs, 
and 144Ce, was constructed for use in the XGB 
prediction model. The model was trained using 
nested cross-validation, and its performance was 
assessed through the coefficient of determination (R2) 
and root mean square error (RMSE). The results 
demonstrate that the model provides reasonable 
predictive accuracy for both metal and actinide 
radionuclides. This machine learning approach offers 
a novel solution to challenges in nuclear waste 
management and can also be used to cross-validate 
the concentrations of DTM radionuclides obtained 
through other methods. 
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1. INTRODUCTION 
For the final disposal of radioactive waste from 
nuclear power plants (NPPs), it is crucial to have 
accurate information about the characteristics and 
quantities of radionuclides contained in the 
radioactive waste packages. Most radionuclides 
that are significant for the long-term storage of 
low- and intermediate-level waste are difficult-to-
measure (DTM) radionuclides, such as 3H, 129I, 
63Ni, 90Sr, 238Pu, etc. 
Since many DTM radionuclides cannot be easily or 
directly measured, the scaling factor (SF) method 
has been widely employed for the safe 
management of nuclear waste. The SF method is a 
technique used to estimate the concentrations of 
DTM radionuclides based on the concentrations of 
easy-to-measure (ETM) radionuclides, assuming a 
correlation between the ETM and DTM 
radionuclides. The formula for SF is as follows: 
 
              SF = ADTM/AETM           (1) 
 
where ADTM is the activity of DTM radionuclide, 
and AETM is the activity of ETM radionuclide. Note 
that the derivation of scaling factors (SFs) has 
relied on empirical models in general, which are 
often limited to simple parametric methods. 

The objective of this study is to develop a model 
for predicting the concentrations of DTM 
radionuclides based on the concentrations of ETM 
radionuclides. The prediction model was 
developed using the machine learning-based 
XGBoost (XGB) method1, coupled with a nested 
cross-validation approach. 
 

2. MATERIALS AND METHODS 
 
2.1 Data collection and pre-processing  
Radionuclide inventory of nuclear waste data from 
EPRI-50772, which includes the quantitative 
information of both DTM and ETM radionuclides, 
was employed to construct the prediction model. 
Plant number was included as input data to 
distinguish the source of the radioactive waste 
from each nuclear power plant. Three ETM 
radionuclides (60Co, 137Cs, and 144Ce) were used as 
input data, while the output data consisted of 13 
DTM radionuclides (3H, 14C, 55Fe, 63Ni, 90Sr, 99Tc, 
129I, 238+239+241Pu, 241Am, and 242+244Cm). 
Since the radionuclide concentrations were 
represented at very low levels, making them 
difficult to differentiate on a linear scale, a 
logarithmic scale was applied to enhance the 
model performance. 
 
2.2 Machine learning model  
For the development of the machine learning 
model, the XGBoost (XGB) method was adopted 
in this study. XGB is a supervised ensemble 
machine learning approach based on multiple 
decision trees with various hyperparameters and is 
well-known for its high performance in regression 
tasks and its ability to handle imbalanced data. 
To address overfitting and data bias issues during 
the data-splitting process, nested cross-validation 
(NCV)3 was employed for model tuning. In this 
study, the NCV method utilized a double-loop 
structure, with five folds in both the inner and 
outer loops (referred to as 5-5 NCV), to enhance 
robustness and provide redundancy of the model. 
Additionally, Bayesian optimization4 was applied 
for hyperparameter tuning to efficiently identify 
the optimal set of hyperparameters. This technique 
is a probabilistic model-based optimization method 
that leverages a surrogate model to predict and 
explore the hyperparameter space more effectively. 
Finally, the performance of the prediction model 
developed in this study was evaluated using R2 and 
RMSE metrics. 



3. RESULTS AND DISCUSSION 
Table 1 lists performance results obtained from the 
5-5 NCV on the DTM radionuclides, representing 
the average R2 and RMSE values from the five 
folds of the outer loop. 

 
Table 1: Performance evaluation results for the 
selective DTM radionuclides derived in this study. 
 

Volatile or mobile radionuclide group 

 3H 14C 99Tc 129I 

R2 0.358 0.578 0.516 0.395 

RMSE 1.017 1.095 0.857 0.895 

Metal or immobile radionuclide group* 

 55Fe 63Ni 238Pu 241Am 244Cm 

R2 0.851 0.887 0.772 0.814 0.805 

RMSE 0.861 0.732 0.830 0.759 0.804 

*Only a selected subset of radionuclides is presented. 
 
According to the results, the DTM radionuclides 
were categorized into two groups. The volatile or 
mobile group (referred to as Group 1) included 
radionuclides such as 3H, 14C, 99Tc, and 129I, which 
exhibited relatively lower performance, with R2 
values ranging from 0.358 to 0.578 and RMSE 
values from 0.857 to 1.095. In contrast, the metal 
or immobile group (referred to as Group 2) 
comprised 55Fe, 63Ni, 90Sr, 238+239+241Pu, 241Am, and 
242+244Cm, demonstrating higher performance, with 
R2 values ranging from 0.772 to 0.887 and RMSE 
values from 0.732 to 0.862.  
Fig. 1 compares the experimental concentrations 
with the predicted concentrations derived by 
integrating the five folds of the outer loop. The 
prediction for 3H exhibits relatively low accuracy, 
with an R2 value of 0.381, whereas 63Ni shows 
strong consistency, achieving an overall R2 value 
of 0.887. These results confirm that integrating the 
predicted values into a single output produces 
outcomes that are relatively consistent with those 
presented in Table 1. 
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Fig. l: Comparison of prediction performance 
between (a) 3H and (b) 63Ni. The dashed line 
indicates the ideal fit where the predicted values are 
equal to observed values. 

As shown in Table 1, radionuclides in Group 1 
exhibit either volatile5 or anionic characteristics, 
which are anticipated to pose challenges in 
predicting their concentrations. In contrast, 
Group 2 radionuclides, consisting of metals and 
actinides, are characterized by their low solubility6, 
restricting their mobility and presumably 
contributing to their relatively stable presence 
within the waste matrix. According to the result 
obtained in this study, these properties are 
expected to enhance the accuracy of prediction 
performance. 
 

4. CONCLUSION 
A computational model for reliably predicting the 
concentrations of DTM radionuclides based on the 
concentrations of ETM radionuclides was 
developed using the machine learning-based 
XGBoost (XGB) model. The R2 values for 
radionuclides in Group 1 were below 0.6, whereas 
those in Group 2 exceeded 0.75, demonstrating 
better performance. 
The model established in this study enables the 
evaluation of DTM radionuclide quantities in 
radioactive waste under arbitrary concentrations of 
ETM radionuclides. Furthermore, this model is 
expected to overcome the limitations of the 
classical scaling factor method through a novel 
approach to addressing challenges in nuclear waste 
management. It can also be used to cross-validate 
the concentrations of DTM radionuclides 
determined through other methods. 
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