Title: Gene expression *Modeling for synthetic biology*

저자: ^{1,2}김홍연, ²나유진, ²이혜원, ¹김동명*, ²김하성*

affiliation: ¹Synthetic Biology Research Center, Korea Research Institute of Bioscience and

Biotechnology, Daejeon 34141, Republic of Korea. Department of Chemical Engineering &

Applied Chemistry Chungnam Univ., 99. Daehak-Ro, Yuseong-Gu, Daejeon, Republic of Korea,

305-764

5) Abstract

In synthetic biology, the design of genetic circuits commonly involves selecting genetic

elements such as promoters, Ribosome Binding Sites, and terminators. However, selecting an

appropriate combination that ensures the circuit function as designed becomes increasingly

challenging as the number of genetic parts grows. This study introduces a novel modeling

approach, explaining gene expression through the incorporation of reaction equations for

transcription and translation processes. Our model applies quantitative characteristics of

genetic parts to these reaction equations and is constructed using a cell-free system to

minimize biological uncertainties. Parameter estimation was executed using the Markov Chain

Monte Carlo sampling method, followed by simulations via Ordinary Differential Equation

solvers to validate the model against real data. We initially estimated unknown parameters with

only transcription equations under three distinct conditions. Subsequently, the parameters in

translation reactions were inferred using the three variant sets of transcription parameters.

The model can be extended to the simulations involving multiple genes and living cells. We

expect this modeling approach enables the prediction and evaluation of circuit designs without

necessitating experiments, thereby significantly curtailing time and labor in synthetic biology

research.