Widespread 8-oxoguanine modifications of miRNA seeds differentially regulate redox-dependent liver cancer development

Sangkyeong Eom^{1,*}, Jongjin Peak^{1,*}, <u>Jongyeun Park</u>^{1,*}, Seung Hyun Ahn^{1,*}, You Kyung Cho¹, Yeahji Jeong¹, Hye-Sook Lee¹, Jung Lee², Elizaveta Ignatova¹, Sung Eun Lee¹, Yunji Hong¹, Dowoon Gu¹, Geun-Woo D. Kim^{1,2}, Dong Chan Lee¹, Ja Young Hahm¹, Jaemin Jeong³, Dongho Choi³, Eun-Sook Jang¹ & Sung Wook Chi^{1,2,4,*}

¹Department of Life Sciences, Korea University, Seoul, Korea

²KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea

³Department of Surgery, Hanyang University College of Medicine, Seoul, Korea

⁴Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and

Technology (KIST), Seoul, Korea

*Corresponding author: chi13@korea.ac.kr

[†]These authors contributed equally to this work

Oxidative stress contributes to tumorigenesis by altering gene expression. One accompanying modification, 8-oxoguanine (o⁸G) can change RNA–RNA interactions via o⁸G•A base pairing, but its regulatory roles remain elusive. Here, on the basis of o⁸G-induced guanine-to-thymine (o⁸G > T) variations featured in sequencing, we discovered widespread position-specific o⁸Gs in tumor microRNAs, preferentially oxidized towards 5' end seed regions (positions 2–8) with clustered sequence patterns and clinically associated with patients in liver hepatocellular carcinoma. We validated that o⁸G at position 3 of miR-122 (3o⁸G-miR-124) and 4o⁸G-let-7 promote malignancy of liver hepatocellular carcinoma by redirecting the target transcriptome to oncogenic regulatory pathways. Stepwise oxidation from tumor-promoting 3o⁸G-miR-122 to tumor-suppressing 2,3o⁸G-miR-122 occurs and its specific modulation in mouse liver effectively attenuates diethylnitrosamine-induced hepatocarcinogenesis. These findings provide resources and insights into epitranscriptional o⁸G regulation of microRNA functions, reprogrammed by redox changes, implicating its control for liver cancer treatment.