Reweighted ensemble structures of Aβ42 monomer using maximum entropy approach <u>Juhyeong Jeon</u>¹, Wonjin Yang¹, Beom Soo Kim¹, Yuxi Lin², Jin Hae Kim³, Young-Ho Lee^{2,4,5,6}, and Wookyung Yu^{1,*} ¹Department of Brain Sciences, DGIST ²Research Center for Bioconvergence Analysis, Korea Basic Science Institute ³Department of New Biology, DGIST ⁴Department of Bio-analytical Science, University of Science and Technology ⁵Graduate School of Analytical Science and Technology, Chungnam National University ⁶Research headquarters, Korea Brain Research Institute *Corresponding author: wkyu@dgist.ac.kr Amyloid β (A β) aggregation is a key feature of Alzheimer's disease. Although complex aggregation mechanisms have been increasingly revealed, the complex nature of A β monomers makes it challenging to study the early events of amyloidogenesis. In this study, we introduced a novel mathematical tool based on the maximum entropy approach. This tool reweights structural ensembles by fitting molecular dynamics simulation data to solution experiment. Our approach successfully yielded ensemble weights that best matched two-dimensional NMR chemical shift data. We also confirmed that the reweighted ensembles are consistent with circular dichroism and dynamic light scattering analyses. An application of maximum entropy with experimental findings holds great promise for advancing our understanding of protein misfolding diseases and their functions, providing a template structure for further research.