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Abstract-- A line-by-line calculation algorithm in the Fourier space utilizing the Fourier-transformed 
Voigt function has been developed. The algorithm requires no approximation method for line shape 
calculation, and provides a straightforward model for the implementation of high-resolution 
radiation/transmission calculation with huge absorption lines for the modern computing 
environment.

1. INTRODUCTION

The line-by-line calculation for the radiation transfer model is required to perform a numerical 
evaluation of the atmospheric radiant observations using high-resolution spectrometer. The line-by-
line method requires the line shapes which can be derived via Voigt function calculation. The Voigt 
function is presented as an integrated form, and the direct computation of the Voigt profiles 
involves a high computational cost. Many investigations were performed using the table-driven 
method or the polynomial-fitting-to-the-function method to reduce this computation cost. A widely 
known rapid computation method was described by Drayson.1 His implementation of the Voigt 
profile computation is adequately rapid under the condition of a limited absolute accuracy of 4 
decimal digits and is practical for transmittance calculations.

The recent radiance/transmittance calculation model for high-resolution and wide-band spectroscopy 
requires more efficiency and more flexibility for the line-by-line computation.  The Voigt function 
computation method using, for example, Taylor-series expansion, is rapid enough for small number 
of lines. However, in the case of using a high-resolution Fourier transform spectrometer (FTS), the 
Voigt function calculation method such as Drayson's method involves substantial computation cost 
because of the huge number of lines. Since the conventional method, in general, is composed of 
complicated subparts that are internally controlled by the parameters of the Voigt function, it was 
difficult to develop an algorithm for the rapid Voigt function computation even when applying 
recent computation environments such as parallel computation approaches. For example, for the 
utilization of FTS to an atmospheric sensor from the space,2 we attempted to develop the table-
driven system using the precalculated transmittance without direct adaptation of the original 
Drayson's method. The table-driven method is rapid, however it becomes very large and stiff for the 
algorithm modifications. 

Additional computation cost requirement factor originates in the line-by-line calculation in the 
wavenumber space which includes many randomly positioned lines. In the conventional method, 
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each line shape must be mapped in the wavenumber space according to its line center position, 
which is generally accompanied by the cutoff of the line shape wings. For example, for the 
application related to the FTS, the conventional method requires the convolution process for 
matching the instrument function or wavenumber resolution. 

The expression of the Voigt function with the Fourier form was proposed in an old paper,3 and the 
result was referred in the review on the mathematical properties of the Voigt function.4 After the 
development of Cooley and Turkey's method for the fast Fourier transform (FFT), the Voigt 
function calculation using the Fourier transform method became practical. Karp, then, demonstrated 
that the Fourier transform method is computationally more efficient than the previous approaches.5 
However, Karp did not clarify the implementation of the method which basically requires a large 
number of computational points, and his method did not get followers. Many studies concerning the 
method for calculating Voigt profiles and the comparison of implementations have been continued, 
without adopting Fourier transform method.6

Recently, Abousahl et al compared the FFT for the Voigt profile with other algorithms.7 However, 
their algorithm was based on the inverse Fourier transform of the convolution of Fourier-
transformed Gaussian and Lorentzian functions considering the fact the Voigt function is the 
convolution of these two functions. This algorithm is simple, however, the computation of 
convolution involves a high computation cost.

2. PREPARATION OF FOURIER TRANSFORM EXPRESSION FOR THE VOIGT 

FUNCTION

The expression of the Voigt function using the Fourier transform style is introduced as follows.4 
The Vogit function K(x,y) is generally presented as

K(x, y) =
y
π

exp(−q2 )
y2 + ( x − q)2

−∞

+∞

∫ dq , (1)

where y is the ratio of the Lorentz-to-Doppler width

y =
α L
αD

(ln 2)1 2 , (2)

and x is the wavenumber scale normalized on the line center ν0. According Reiche,3 the integrand of 
Eq. (1) can be represented as follows, when y>0.

y
y2 + (x − q)2

= exp(−y t) cos[(x − q) t]dt

0

∞

∫ (3)

Applying Eq. (3) to Eq. (1), and carrying out the integration over q,  we can obtain the Fourier 
transform of the Voigt function as
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K(x, y) =
1
π1 2

exp(−yt − t2 4) cos xt dt
0

∞

∫ . (4)

In this paper, a new implementation path for the radiation transfer calculation model is described. 

3. IMPLEMENTATION OF THE SPECTRAL CALCULATION USING FFT

Considering the characteristics of Fourier transformation and the Fourier coefficients, regarding the 
linearity of Fourier transform as also mentioned,5 we can expect that the absorption coefficients for 
many atmospheric lines can be represented as a  Fourier transform of the multiple sum of each term 
which is shown as the integrand of Eq. (4). 

When applying Eq. (4) to the calculation of multiple lines, we can modify the term cos(xt) in the 
integrand of Eq. (4) to exp(-i ν* t) for each line, where ν*  is the normalized wavenumber of each line 
center. For the wavenumber normalization, we introduce the maximum calculation wavenumber νmax 
.

We must first consider the scale for x in the representation of the Vogit function K(x,y). The 
parameter x is represented as

 x =
ν − ν0
αD

(ln 2)1 2 . (6)

αD is the Doppler half-width defined as

 α D = ν0
2 k T ln 2
Mc2

 

 
 

 

 
 

1 2

, (7)

where M is the molecular weight (kg), and  k, c, and T  are the Boltzmann constant,  speed of  light, 
and temperature, respectively. Then x is represented as

x =
ν − ν0
ν0

V(T,M) . (8)

V is a nondimensional function of temperature and the specified molecular weight, and is 
represented as

V(T,M) =
Mc2

2k T
 

 
 

 

 
 

1 2

. (9)

In general, if the line-by-line calculation is carried out under constant temperature and pressure 
conditions, the function V can be treated as a constant VTM  in the Fourier transform. 

Then we can obtain the integrand of Eq. (4) for the absorption lines indexed with  j,
f (t) = exp[−y j (tν j ) − (tν j )

2 4]
j
∑ exp[−i tν jVTM ]ν j   , (10)

where νj is a line center normalized with νmax as  ν j= ν/  νmax .
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There are several conventions for the computational implementation for the Fourier transform. We 
adopted the Fourier transform function bs of  ar defined as

1
π1 2

ar
r=1

n

∑ exp[2πi (r − 1)(s −1) / n]  . (11)

In this case, the numerical list ar of length n is produced from the function f(t). Considering that the 
discrete Fourier transform (DFT) may be applied to the function having a period of 2π,  ar becomes 
a numerical list calculated using f(t) for t from 0 to P with the step s.  Each of these parameters is 
defined as

P = 2π(rs −1 VTM )  , (12)

s = 2π VTM  . (13)
The length n is defined as 

n = VTM rs −1 , (14)

where rs is the scale adjustment parameter for the number n. Obviously, rs defines the wave- 
number resolution of  the results. In a common case, the parameter rs would be used to adjust n to 

2m for the convenience of FFT.

Finally, we can produce the line-by-line calculation model as the real part of
1

π1 2
ks ar

r =1

n

∑ exp[2πi (r −1)(s − 1) / n] , (15)

where ks is the scaling coefficient which can be shown as
ks = 2 πrs VTM( )1 2  . (16)

Figure 1 shows a sample of the list ar to be Fourier transformed. The calculation parameters are the 
same as those shown in the following section. We can see the analogies between the relations of the 
interferogram obtained by FTS and the spectrum calculated from the interferogram in this figure, and 
easily expect the method to define the wavenumber resolution and the application defining the 
instrument function.
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Fig. 1. The numerical list of ar to be Fourier transformed, which represents the sum of 
absorption lines in the Fourier space and is corresponding to an interferogram 
of the FTS.

4. NUMERICAL EVALUATION OF THE METHOD

In atmosphere, VTM becomes a relatively large number, according to Eq. (9). When T=300 K, VTM 
becomes 5.6946*105 for H2O. This condition requires a large computation size for the FFT. The 
FFT computation size close to 219 is not very large for the modern computing environment, 
however, a smaller size may be better. In order to reduce the size, we can introduce the Fourier 
transform computation scale l, where l=1, 2, 3, ..., m. Using this scale, we can reduce the total 
calculation number to halve, one third, or more, and Eqs. (13) and (16) are modified as

s = 2lπ VTM  , (17)

ks = 2 lπrs KTM( )1 2  . (18)

When we introduce the scale l, the line-by-line calculation presented by Eq. (15) yields the result in 
the scope of a band from νmax−νmax l  to νmax  .

To evaluate Eq. (15), the original Voigt function defined using Eq. (1) was numerically integrated 
with the machine precision of 20 decimal digits and  an accuracy of 10 digits. Figure 2 shows the 
result for two sample lines, 1,550 cm-1 and 1,520 cm-1 with VTM=500,000 and for each y=1 and 2, 
where the sample size of the Fourier transform is 40,000. As expected, replacing the integrals in Eq. 
(4) by a sum over a finite equation of Eq. (15) could introduce an aliasing error. To reduce this 
aliasing error, we should consider the relation between the calculation range of the band mentioned 
above and position of the lines at each end of the line cluster. Each end-line position must be such 
that the wing of the line is small enough at the end of the calculation range compared to the model 
accuracy requirement. Also, there is a well-known truncation error induced due to replacing the 
infinite integrals in Eq. (4) by a sum over a finite representation of Eq. (15). 
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Fig. 2. The result of line-by-line calculation for two example lines, where the 
numerical calculation was performed for the wavenumber range from 1500 cm-

1 to 1600 cm-1 and the Fourier sample size of 40000.

Figure 3 shows the comparison of the lines between the result of the Fourier-transformed Voigt 
function represented by dots and the result of numerical integration of Eq. (1) represented by the 
solid line. The numerical integration for Eq. (1) was performed with an accuracy of 10 decimal 
digits. The upper figure is for the line centered at 1550 cm-1 and the maximum difference between 
the two results was 0.000109. The lower panel shows the same result of the comparison for the line 
centered at 1520 cm-1, and the maximum difference between the two was also 0.000109, as 
expected.
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Fig. 3. Numerically evaluated results of the Fourier transform method, where dots 
represent the results obtained using this method and solid lines were obtained 
from the direct numerical integration of Eq. (1). The upper figure shows the 
close-up of the line centered at 1550 cm-1 and the lower figure shows the line 
centered at 1520 cm-1.

As shown, we can achieve the line-by-line calculation using DFT within an accuracy of 4 decimal 
digits, and the difference can be further reduced because the implementation of the Fourier-
transformed Voigt function itself is not approximated using such a polynomial, but is related only to 
the size of the DFT (or FFT) samples and with the accuracy of the internal floating point number 
representation of each computer. The practical approach should be adopted for the reduction of 
errors introduced by the finite Fourier transform operation when we implement a radiative transfer 
model applying this algorithm.

5. CONCLUSIONS

A line-by-line calculation algorithm was presented utilizing Fourier transform. Because the line 
summation is performed in the Fourier space, arbitrary wavenumber resolution can be obtained 
easily, and neither the line-shape cutoff at the wing part nor the mapping procedure of each 
different centered line shape to the wavenumber space in the conventional method are required. 
Since the developed method was  analytically introduced from the definition of the Voigt function, 
the developed algorithm is independent of the approximation methods included in the conventional 
method. The straightforward structure produced from the developed algorithm can adapt well to a 
modern computation environment in high-speed line-by-line calculation. 
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