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Summary
The problem of how to detect invisible changes of structure by simple means remains to be solved. The
estimation of the resonance frequency of a structure using its non-stationary vibration which is excited
by the natural force of winds, ground motions or both is one of the possible ideas. The resonance
frequency shift reflects the stiffness change of a structure which might be caused by an earthquake or
structural degradations. The ground motion is excited by vibrations coming from several directions.
These vibrations involve reflections from obstacles or discontinuities under the ground, causing the
interference of vibrations which disturbs the estimation of the resonance frequency of a structure.
The new method proposed in this paper can cope with this problem and give the accurate estimation
of the resonance frequency of a structure. Experimental results suggest that the method is available
for the health-monitoring of several structures.

PACS no. 43.40.Le, 43.60.Bf, 43.60.Cg, 43.60.Wy, 43.60.Ac

1. Introduction

A number of buildings, bridges and towers have
been constructed in past decades. Consequently, there
are many decrepit structures which need to be
reconstructed[1]. The resonance frequency shift re-
flects the stiffness change of a structure, which might
be caused by the structural degradation or damage
due to an earthquake. To measure the resonance fre-
quency of a big structure, it is necessary to vibrate it
using a huge shaker. But it is not practical to shake a
building, for example, before and after an earthquake
to detect the structural change. Regardless of size or
weight, all structures are vibrating due to the nat-
ural force of winds, ground motions or both. Thus,
the estimation of the resonance frequency of a struc-
ture using the natural force of vibration provides the
simple and practical method of health-monitoring for
several structures.

2. A problem needs to be solved

The ground motion is continuously excited by non-
stationary vibrations coming from several directions.
These vibrations involve reflections from obstacles

and discontinuities under the ground, causing the in-
terference of vibrations which disturbs the estimation
of the resonance frequency of a structure.

A well known method for estimating the frequency
response of a system which is excited by a random
noise is to approximate the response by an averaging
of the power spectra obtained by applying the DFT
to sampled data of the output of the system. The
limitation of the DFT spectrum analysis is that of
frequency resolution[2]. The frequency resolution ∆f
in hertz is roughly the reciprocal of the time interval
∆t in seconds over which sampled data is available,
i.e., ∆f∆t ' 1.

The resonance frequencies of many buildings of the
height less than 50 meters lie between 1 Hz and 10 Hz.
Expressing the resonance of a building (the first mode
of vibration) by that of one degree of freedom system
whose stiffness is given by E and mass by M , the res-
onance frequency is given by F = (1/2π) (E/M)

1/2.
Thus, the frequency shift ∆F caused by the stiffness
change ∆E is expressed by ∆F ' F∆E/2E. For ex-
ample, the stiffness change of 10 %, i.e., ∆E/E = 0.1,
causes the resonance frequency shift such that ∆F =
0.05(Hz) for F = 1 (Hz), ∆F = 0.1 (Hz) for F = 2
(Hz), and so on. Thus, to detect the stiffness change
of 10 % by the DFT spectrum, it needs the time inter-
val of sampled data such that ∆t ' 20 (s) for F = 1
(Hz), ∆t ' 10 (s) for F = 2 (Hz), and so on.

A waveform composed of a direct and reflected
waveform shows periodic peaks and dips of its fre-
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quency characteristic. Suppose T is a delay, i.e., the
time interval of the direct and reflected waveform.
The frequency interval of the periodic peaks or dips
is given by 1/T . To avoid the influence of the reflec-
tion on the spectrum of the direct waveform, it needs
to set the time interval of sampled data such that
∆t < T . Measured results show that disturbing re-
flections under the ground are such that T > 1 (s) in
low frequencies between 1 Hz and 10 Hz. Therefore,
a problem is how to achieve the frequency resolution
of ∆f = 0.1 (Hz) using short data samples such that
∆t = 1 (s) to estimate the resonance frequency of a
structure.

3. A method for the accurate estima-
tion

The dominant frequency (or period) of short sampled
data that gives a least-squared fit of the sampled data
to a sinusoid is given by the non-harmonic Fourier
analysis. The frequency precision of the analysis is
not strongly restricted by the time interval[3].

LetD(fn) be the frequency distribution of the dom-
inant frequencies of a number of short sampled data
which are fractions of the sampled output of a sys-
tem and S(fn) the averaging of DFT spectra obtained
from the same output, where fn’s are frequencies such
that fn− fn−1 = ∆f . For example, putting ∆f = 0.1
(Hz), the time interval of sampled data for DFT anal-
ysis is 10 (s), while sample data of 1 (s) are available
for the non-harmonic Fourier analysis. Then, when
the system is excited by a random noise, from the
reference[4], we have D(fn) and S(fn) are related by

D(fi)−D(fj) = KQij
S(fi)− S(fj)

S(fi) + S(fj)
(1)

where K is a constant and 0 < Qij < 1. Thus,

D(fi) > D(fi) for S(fi) > S(fi). (2)

Examples of S(fn) and D(fn) obtained by numeri-
cal experiments are shown in Fig.1 and Fig.2, respec-
tively. The output of a model structure was given by
the convolution of an impulse response and a random
noise or a random noise with reflections. Assumed
times are as follows: (1) The time length of the out-
put is 30 minutes; (2) The time interval of sampled
data for the DFT analysis is 10 seconds and that for
the non-harmonic Fourier analysis 1 second; (3) De-
lay times of reflections are (a) 0 (no reflection), (b) 1.6
and 4.0 seconds, (c) 2.0 and 5.0 seconds. The vertical
axis is given by the relative value of S(fn) or D(fn).
The resonance frequency of the model structure is 4.6
Hz.

When the model structure is excited by a random
noise without reflections,D(fn) is roughly the same as
S(fn). As a corollary, the aim of the frequency distri-
bution of the dominant frequencies is not to fit D(fn)

to S(fn). A point is to give the stable and accurate
estimation of the resonance frequency of a structure
that is excited by the natural force of vibration.

4. The estimation in practice

The numerical experiments show that the influence of
the reflections on the average spectrum S(fn) is large,
causing many peaks and dips. This problem is solved
by the frequency distribution D(fn), see Figs 1 and
2.

Figure 1. The average spectrum S(fn) where the number
of the DFT spectra for averaging is 180 and the assumed
time interval of sampled data 10 sec, applying (A) a ran-
dom noise, (B) and (C) random noise with reflections.

To ascertain the stability and accuracy of D(fn)
concerning the estimation of the resonance frequency
of a real structure using its non-stationary vibration
excited by the natural force of winds, ground motions
or both, measurements of the vibration of a building,
see Fig. 3, were made over a year.

The vibration was measured one hour in each day
and stored in a computer for analysis.The average
spectrum S(fn) and the frequency distribution D(fn)
were obtained from the same set of data. The interval
of sampled data for the DFT analysis is 10 (s), thus
∆f = 0.1 (Hz), and that for the non-harmonic Fourier
analysis 1 (s). Thus, the number of DFT spectra for
averaging is 360 and that of dominant frequencies for
frequency distribution 3,600.

Fig.4 and Fig.5 show the time-varying patterns of
S(fn) and that of D(fn), respectively, which were ob-
tained on different days from November, 2011 (bot-
tom) to October, 2012 (top). Similar to the numerical
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Figure 2. The frequency distribution of the dominant fre-
quencies D(fn) where the number of samples for a distri-
bution is 1,800 and the assumed time interval of sampled
data 1 sec, see Fig.1.

Figure 3. Waseda Univ. bldg. No.55. Vibrations were mea-
sured on the 6th floor of the building.

experiments, there are many peaks and dips in the
pattern of S(fn), which makes it difficult to estimate
the resonance frequency.

The estimation based on D(fn) is stable compar-
ing with S(fn). Fig. 5 shows that the resonance fre-
quency of the horizontal vibration of x axis is 4.5 or
4.6 Hz and that of y axis 2.0 or 2.1 Hz. The appar-
ent fluctuation of the resonance frequency is mainly
due to reflections under the ground which vary with
time. This fluctuation decreases with the increase of
the number of samples of the frequency distribution.
To detect the frequency shift caused by the stiffness
change of the building, it takes decades.

The computation time of D(fn) is nearly the same
as S(fn). It is possible to estimate the resonance fre-

Figure 4. Time-varying patterns of S(fn) pertaining the
vibration of x and y axis. Measurements were made from
November, 2011 to October 2012..

Figure 5. Time-varying patterns of D(fn) pertaining the
vibration of x and y axis, see Fig. 4.

quency using D(fn) given by the rectangular wave-
form, i.e., the amplitude of the vibration is expressed
by 1 bit. This implies that D(fn) is not affected by
the non-linearity of a measuring system. The real-time
implementation of the new method affords the tool of
monitoring invisible changes of several structures.
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