
The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
JOI Open Contest

June 6, 2021

financial

Financial Report (Solution)

In this review, we explain a solution for each of 6 Subtasks. We first explain how to solve Subtask 1 by a

brute-force search algorithm whose time complexity is O(2N × N). Then we explain a solution to Subtask 2 by

Dynamic Programming whose time complexity is O(N3). An improvement of it gives a solution to Subtask 3

whose time complexity is O(N2)

Then we explain faster algorithm which is valid in some special circumstances such as Subtask 4 (D = 1)

and Subtask 5 (D = N). Finally, we explain full score solution whose time complexity is O(N log N). It is an

improvement of the solution of Subtask 3 by data structures. for certain how to solve the task faster for

If you hurry to read a full score solution, please see “Full Score Solution” section in p. 5.

Subtask 1 (N ≤ 20)

First, we consider a brute-force search algorithm to choose the data for the presentation. There are two

choices (Bitaro chooses it or does not choose it) for the data for each day. In total, there are 2× 2× · · · × 2 = 2N

choices to choose the data . The solution of this task is the maximum of the impression scores for these choices.

How can we list all of the 2N possible choices by a brute-force algorithm? There are several methods of

implementation.

1. Search all of the 2N possible choices by a nested loop. (It is an unusual method because the implemen-

tation is hard.)

2. Use a recursive function.

3. Use a brute-force bit search using binary digit numbers.

Here we explain the third method because the implementation is easy. The idea of brute-force bit search is to

associate an integer between 0 and 2N − 1, inclusive, to each of the 2N choices. Precisely, we associate it in the

following way.

Consider the binary digits of an integer i (0 ≤ i ≤ 2N − 1). If the digit in the 2 j-th place is 1, Bitaro

chooses the j-th data. If the digit in the 2 j-th place is 0, Bitaro does not choose the j-th data.

We can accomplish a brute-force search of 2N possible choices by writing a for loop from i = 0 to 2N − 1.

For each i, we can check whether it satisfies the condition or not and calculate the impression scores in O(N)

time. The total time complexity is O(2N × N). We can calculate the answer under the constraints of Subtask 1.

Thus we can get 15 points. The time complexity will be the same if we use other implementation methods such

as recursive functions.

Financial Report (Solution)– 1 / 7



The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
JOI Open Contest

June 6, 2021

financial

Subtask 2 (N ≤ 400)

A brute-force search algorithm is not efficient because if N is increased by 1, then the time complexity is

multiplied by 2. Obviously it cannot give an answer when N = 400. We shall use Dynamic Programming (DP)

to improve the algorithm. In the following, we consider an algorithm to choose the data in chronological order

and update the values in the DP table sequentially

dp[pos][curmax]: the maximum number of times of making record-high sales amounts under the as-

sumption that the final chosen data is the data of the pos-th day and the maximum sales amount at that

day is curmax yen.

Let (pos, curmax) be the state that dp[pos][curmax] indicates. If Bitaro chooses the data of the nxt-th day

when the state is (pos, curmax), the state becomes (nxt,max(curmax, nxt)). Thus we can update the values in

the DP table in the following way.

1. In the beginning, all the values of dp[pos][curmax] are the initial value −∞.

2. Do the operations 2-3 from smaller values of pos, curmax.

3. If curmax = Apos, the value of dp[pos][curmax] becomes max(dp[pos][curmax], 1). It means the first

data chosen by Bitaro is the data of the pos-th day.

4. For every nxt (pos + 1 ≤ nxt ≤ N), we update the value of dp[pos][max(curmax, Anxt)] to be

max(dp[pos][max(curmax, Anxt)], dp[pos][curmax] + 1).

5. The answer is the maximum of the final values of dp[pos][curmax].

However, we cannot calculate these values efficiently because the value of curmax can be as large as 109.

Here we shall use the coordinate compression technique because the answer depends only on the relative

magnitude relationship between Ai. We may consider all values are compressed into the range 0 ≤ Ai ≤ N − 1.

Then, we have 0 ≤ curmax ≤ N − 1, and we can finite the calculation of the DP table in O(N3) time.

Subtask 3 (N ≤ 7000)

We shall speed up the DP algorithm as above. We are now calculating the values of the DP table

dp[pos][curmax] sequentially. In order to speed up the calculation, we need to do one of the following:

• We shall speed up the calculation of each dp[pos][curmax].

• We shall reduce the total number of possible states of DP. Currently, the number of possible values of

(pos, curmax) is O(N2).

Financial Report (Solution)– 2 / 7



The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
JOI Open Contest

June 6, 2021

financial

Here we explain how to reduce the calculation in the second part. We shall perform DP calculation without

considering curmax. Now, the reason why we need to consider curmax is to decide whether a record-high sales

amount is achieved or not. In order to eliminate this consideration, we shall change the state of DP only when
a record-high sales amount is achieved. Let us calculate the following DP table sequentially.

dp[pos]: the maximum number of times of making record-high sales amounts under the assumption that

the final chosen data is the data of the pos-th day and the maximum sales amount is achieved at that day.

We can calculate the valued in the DP table as follows: if it is possible to change the state from dp[pre] to

dp[pos] (i.e., it is possible to achieve a maximum sales amount on the pos-th day after achieving a maximum

sales amount on the pre-th day), then we update the value of dp[pos] to be max(dp[pos], dp[pre] + 1). It is

possible to change the state as dp[pre]→ dp[pos] if and only if the following condition is satisfied.

(Condition) Apre < Apos, and, for each of the pre + 1, pre + 2, · · · , pos − 1-th day, we can choose a data

whose sales amount is at most Apre yen so that the difference of any two consecutive dates is at most D

days.

In order to satisfy the above condition, the optimum strategy is to choose all of the data whose sales amount

is at most Apre yen. Hence we can rewrite this condition as follows, and can determine it easily.

(Condition) Apre < Apos, and, for each of the pre+1, pre+2, · · · , pos−1-th day, there are no consecutive

D days when the sales amount exceeds Apre yen.

It takes O(N3) time to obtain the answer if, when we calculate the value of dp[pos], we individually determine

whether it is possible to change the state as dp[pre] → dp[pos] for each pre. We can calculate whether it is

possible to change the state for every pair (pre, pos) in advance. Then, we can obtain the answer in O(N2) time

in total. The answer of this task is the maximum of dp[1], dp[2], . . . , dp[N].

Method of precalculation (Part 1)

There are several methods of precalculation. Here is a method. First, we note that the condition “for each of

the pre + 1, pre + 2, · · · , pos − 1-th day, there are no consecutive D days when the sales amount exceeds Apre

yen” becomes stronger if the value of pos increases. Therefore, the condition is satisfied for a range of the form

pre + 1 ≤ pos ≤ Rpre.

For each i, the value of Ri is “the first position among Ai+1, Ai+2, . . . , AN where D + 1 consecutive values

exceed Ai.” (If such a position does not exists, then Ri = N.) Thus, it can be calculated in O(N) time for each

i. After we calculate the values of R1,R2, . . . ,RN , we can determine whether it is possible to change the states

easily; the change of states is possible if and only if “Apre < Apos and pre + 1 ≤ pos ≤ Rpre” are satisfied. We

Financial Report (Solution)– 3 / 7



The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
JOI Open Contest

June 6, 2021

financial

can calculate it for every pair (pre, pos) in advance in O(N2) time.

The method of calculating R1,R2, . . . ,RN is related to the full score solution.

Subtask 4 (D = 1)

Let us recall the conditions. When D = 1, we need to choose the data so that the following two conditions

are satisfied.

• Bitaro will show the latest sales amount.

• For any two consecutive data, the difference of the dates is at most 1 days. In other words, Bitaro has to
choose the data of consecutive days.

Thus Bitaro has to choose the data of the x, x + 1, . . . ,N-th days (1 ≤ x ≤ N). There are N possible choices.

But, if we calculate the impression score for each choice, the total time complexity becomes O(N2), and we

cannot solve this Subtask.

In order to solve it, we shall calculate the answer for x = N,N − 1, · · · , 1 in this order. We consider an

algorithm using the data structure called “stack” to store the position where the maximum sales amount is

achieved.

• Perform the operations 1-3 for i = N,N − 1, . . . , 1, in this order.

1. Delete (pop) the last element until the stack becomes empty or the last element of the stack becomes

at least Ai + 1.

2. Add Ai to the end of the stack.

3. At that time, the size of the stack is the impression score when x = i.

• The answer is the maximum of the impression scores calculated above.

Financial Report (Solution)– 4 / 7



The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
JOI Open Contest

June 6, 2021

financial

It may happen that it takes O(N) time to perform an operation of type 2. But the total time complexity is

O(N) because the values at added to the stack N times and the number of times of deleting elements in in the

operation 2 is at most N.

Subtask 5 (D = N)

When D = N, we need to choose the data so that the following two conditions are satisfied.

• Bitaro will show the latest sales amount.

• For any two consecutive data, the difference of the dates is at most N days.

We can ignore the second condition because it is always satisfied for any choice of the data for presentation.

Thus we shall consider the first condition only. Moreover, the impression score will never increase if we delete

the date of the last day. Also, the impression score will remain the same if we delete all of the data where the

maximum sales amount is achieved. Therefore, we only need to consider the data where the maximum sales

amount is achieved. Hence we need to calculate the following.

The maximum number of data so that the sales amounts at the chosen days are increasing in chronological

order.

This is a famous problem called “Longest Increasing Subsequence (LIS).” It is well-known that it can be

solved in O(N log N) times. There are several algorithms to solve it. Here is one such algorithm.

1. In the beginning, we set the values of s1, s2, . . . , sN to be∞.

2. Perform the following operation for i = 1, 2, . . . ,N, in this order.

Financial Report (Solution)– 5 / 7



The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
JOI Open Contest

June 6, 2021

financial

• Find the minimum pos satisfying spos ≥ Ai by a binary search technique, and update the value of

spos to be Ai.

3. Finally, the number of k such that the value of sk is different from∞ is the length of the Longest Increas-

ing Subsequence (LIS).

Note that the sequence s1, s2, . . . , sN calculated by the above algorithm is not necessarily an example of

Longest Increasing Subsequence (LIS).

Full Score Solution

Before, we calculate the DP table in chronological order (i.e., the order of the data A1, A2, . . . , AN). However,

in the DP solution of Subtask 3, it is more convenient for us to calculate them in the reverse order (i.e., the order

of the data AN , AN−1, . . . , A1). Here we shall consider calculating the following DP table in the opposite order.

dp[pos]: the maximum number of times of making record-high sales amounts in the past (in chronolog-

ical order) when we are choosing data opposite to the chronological order and the final chosen data is the

data of the pos-th day.

Note that we change the DP states in the opposite order. As in Subtask 3, the change of states dp[pre] →
dp[pos] is possible if and only if the following condition is satisfied.

(Condition) Apre > Apos, and, for each of the pos+1, pos+2, · · · , pre−1-th day, there are no consecutive

D days when the sales amount exceeds Apre yen.

As in the solution of Subtask 3, the value of Ri is “the first position among Ai+1, Ai+2, . . . , AN where D + 1

consecutive values exceed Ai.” (If such a position does not exists, then Ri = N.) Then we can change the state

to be dp[pos] in the range pos + 1 ≤ pre ≤ Rpos satisfying Apre > Apos. We can calculate the DP table by the

following simple formula. (If we calculate the table by this formula, the total time complexity becomes O(N2).)

dp[pos] = max
(

max
pos+1≤i≤Rpos,Ai>Apos

dp[i], 0
)
+ 1

We need to speed up this algorithm using a data structure. In order not to consider the condition Ai > Apos,

we shall calculate the values of Ai in decreasing order. We have the following algorithm.

1. We set the values of dp[1], dp[2], . . . , dp[N] to be −∞.

2. Perform the following operation in decreasing order of the value of Apos (in increasing order of pos if

the values are the same).

• We set dp[pos] = max
(
dp[pos + 1], dp[pos + 2], . . . , dp[Rpos], 0

)
+ 1.

Financial Report (Solution)– 6 / 7



The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
JOI Open Contest

June 6, 2021

financial

3. Finally, the answer is the maximum of dp[1], dp[2], . . . , dp[N].

It usually takes O(N) time to calculate one dp[pos]. Since calculating the minimum in a range is RMQ

(Range Maximum Query), we can calculate it in O(log N) using a segment tree. Thus, once R1,R2, . . . ,RN are

calculated, we can obtain the answer in O(N log N) time in total.

Method of precalculation (Part 2)

The remaining task is to calculate the values of R1,R2, . . . ,RN . We can calculate it in O(N2) time by

the algorithm explained in Subtask 3. We need to speed up it. Recall that Ri is “the first position among

Ai+1, Ai+2, . . . , AN where D + 1 consecutive values exceed Ai.” In order words, it is the first value j ≥ i + D + 1

where all of the values of A j−D, A j−D+1, · · · , A j exceed Ai.

Here we put M j = max(A j−D, A j−D+1, . . . , A j). Then Ri is the minimum of j in the range j ≥ i + D + 1 such

that M j ≥ Ai + 1 is satisfied. Hence we can calculate them by the following way.

1. For j = D + 1,D + 2, . . . ,N, calculate M j = max(A j−D, A j−D+1, . . . , A j). For example, they can be

calculated in O(N log N) time if we use a RMQ segment tree.

2. Then Ri is equal to the leftmost index among Mi+D+1,Mi+D+2, . . . ,MN where the value exceeds Ai. For

example, it can be calculated in O(N log N) time in total if we use a binary search technique on a RMQ

segment tree.

Hence we can calculate the values of R1,R2, . . . ,RN in O(N log N) time in total.

There are several ways to calculate the values of R1,R2, . . . ,RN in advance. Here we only explain one way.

Some contestants may solve this task by other methods. For example, in the operation 1, we can calculate

MD+1,MD+2, . . . ,MN in O(N) time by a “sliding minimum technique.” There are also completely different

methods. For example, we can calculate Ri in the increasing order of Ai using std::set.

Financial Report (Solution)– 7 / 7


