Crossing (Solution)

We associate J, 0 , I with $0,1,2$, respectively, and consider a gene sequence as an N-dimensional vector over the residue field F_{3}. Let $v \circ u$ be the gene sequence obtained from v, u by crossing. Note that $v \circ u=2(v+u)$ holds. By induction on the number of crossing operations, it can be shown that a gene sequence which can be obtained from S_{A}, S_{B}, S_{C} is written as a linear combination of the form $a S_{A}+b S_{B}+c S_{C}$ for some $a, b, c \in F_{3}$ satisfying $(a+b+c) \bmod 3=1$. This is a necessary condition. There are 9 possible choices of tuples (a, b, c), and all of them are obtained as follows. Hence this is also a sufficient condition.

- If $(a, b, c)=(1,0,0)$, it is the sequence S_{A} itself.
- If $(a, b, c)=(0,1,0)$, it is the sequence S_{B} itself.
- If $(a, b, c)=(0,0,1)$, it is the sequence S_{C} itself.
- If $(a, b, c)=(2,2,0)$, it is the sequence $S_{A} \circ S_{B}$.
- If $(a, b, c)=(0,2,2)$, it is the sequence $S_{B} \circ S_{C}$.
- If $(a, b, c)=(2,0,2)$, it is the sequence $S_{C} \circ S_{A}$.
- If $(a, b, c)=(2,1,1)$, it is the sequence $S_{A} \circ\left(S_{B} \circ S_{C}\right)$.
- If $(a, b, c)=(1,2,1)$, it is the sequence $S_{B} \circ\left(S_{C} \circ S_{A}\right)$.
- If $(a, b, c)=(1,1,2)$, it is the sequence $S_{C} \circ\left(S_{A} \circ S_{B}\right)$.

Therefore, calculating the above 9 gene sequences in advance, we need to compare them with each sequence T_{j}. Under the constraints of Subtask 3, it can be done in time by a simple comparison of strings.

In the following, we fix a gene sequence S. We want to decide whether it coincides with each sequence T_{j} or not. This immediately gives a solution of Subtask 2. Combining it with the above consideration, we obtain a solution of Subtask 4.

For simplicity, we assume the integer N is a power of 2 . We put the additional data

$$
a u x[l, r):= \begin{cases}\mathrm{J} & (S[k]=\mathrm{J} \text { for all } l \leq k<r) \\ 0 & (S[k]=0 \text { for all } l \leq k<r) \\ \mathrm{I} & (S[k]=\mathrm{I} \text { for all } l \leq k<r) \\ -1 & \text { (otherwise) }\end{cases}
$$

on each node of a segment tree. Defining lazy propagation functions appropriately, we can construct a lazy propagation segment tree (seg, lazy) with

$$
\operatorname{seg}[l, r):= \begin{cases}1 & \left(S[l, r)=T_{j}[l, r)\right) \\ 0 & \text { (otherwise) }\end{cases}
$$

for every evaluated node $\operatorname{seg}[l, r)$. The time complexity of this algorithm is $O(\log N)$ per a query. It is sufficiently fast to solve this task.

