The 18th Japanese Olympiad in Informatics (JOI 2018/2019) JOI Open Contest

July 14, 2019

Triple Jump

There is a very long straight road, which consists of N sections numbered from 1 through N. Each section has specific firmness, and the firmness of the section $i(1 \leq i \leq N)$ is A_{i}.

JOI-kun, the gifted sport star, is going to play triple jump. A triple jump consists of three consecutive jumps. Let a, b, c be the numbers of sections at which JOI-kun takes off, then the following conditions should be met.

- $a<b<c$. Namely, the numbers of the sections should be increasing.
- $b-a \leq c-b$. Namely, the jumping distance of the first jump should be less than or equal to the jumping distance of the second jump.

JOI-kun is going to perform Q triple jumps. In the j-th $(1 \leq j \leq Q)$ triple jump, he should take off at sections whose numbers are in the range of L_{j} to R_{j}. In other words, $L_{j} \leq a<b<c \leq R_{j}$ must be hold.

JOI-kun wants to take off at firmer sections. For each triple jump, JOI-kun is curious to know the maximum sum of firmness of the sections at which JOI-kun takes off.

Write a program that, given the number of sections and the information of triple jumps, calculates for each triple jump the maximum sum of firmness of the sections at which JOI-kun takes off.

Inputs

Read the following data from the standard input. All the values in the input are integers.

$$
\begin{aligned}
& N \\
& A_{1} A_{2} \cdots A_{N} \\
& Q \\
& L_{1} R_{1} \\
& L_{2} R_{2} \\
& \vdots \\
& L_{Q} R_{Q}
\end{aligned}
$$

Outputs

Write Q lines to the standard output. The j-th $(1 \leq j \leq Q)$ line should contain the maximum sum of firmness of the sections at which JOI-kun takes off in the j-th triple jump.

July 14, 2019

Constraints

- $3 \leq N \leq 500000$.
- $1 \leq A_{i} \leq 100000000(1 \leq i \leq N)$.
- $1 \leq Q \leq 500000$.
- $1 \leq L_{j}<L_{j}+2 \leq R_{j} \leq N(1 \leq j \leq Q)$.

Subtasks

1. (5 points) $N \leq 100, Q \leq 100$.
2. (14 points) $N \leq 5000$.
3. (27 points) $N \leq 200000, Q=1, L_{1}=1, R_{1}=N$.
4. (54 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1			
5			12	
5	2	1	5	3
3			9	
1	4		12	
2	5			
1	5			

In the first jump, JOI-kun can achieve the maximum sum of 12 by taking off at the sections 1,2 and 4.
In the second jump, JOI-kun can achieve the maximum sum of 9 by taking off at the sections 3,4 and 5 . If he takes off at the sections 2,4 and 5 , the sum of firmness is 10 , but $b-a \leq c-b$ is not satisfied.

In the third jump, JOI-kun can achieve the maximum sum of 12 by taking off at the sections 1,2 and 4 . If he takes off at the sections 1,4 and 5 , the sum of firmness is 13 , but $b-a \leq c-b$ is not satisfied.

The 18th Japanese Olympiad in Informatics (JOI 2018/2019) JOI Open Contest

July 14, 2019

Sample Input 2	Sample Output 2			
5			14	
5	4	4	5	4
1				
1	5			

This sample input satisfies the constraints for Subtask 3.

Sample Input 3	Sample Output 3
15	277
$\begin{array}{llllllllllllllllllllll}12 & 96 & 100 & 61 & 54 & 66 & 37 & 34 & 58 & 21 & 21 & 1 & 13 & 50 & 81\end{array}$	227
12	72
115	262
312	178
1114	181
113	174
59	257
46	208
614	262
25	262
415	113
17	
110	
813	

