Triple Jump (Solution)

For any i and j, we consider when they are possibly used as $a=i$ and $b=j$ (in any one of the queries).
First, if there exists k satisfying $i<k<j$ and $A_{k} \geq A_{j}$, we do not need to consider the solution with $a=i$ and $b=j$ because if we put $b=k$, we get a solution which is not worse than it.

Second, if $A_{i} \leq A_{j}$ and there exists k satisfying $i<k<j$ and $A_{i} \leq A_{k} \leq A_{j}$, we do not need to consider the solution with $a=i$ and $b=j$ because if we put $a=k$, we get a solution which is not worse than it.

By the above two reasons, the number of pairs i, j we need only consider is $O(N)$. We can list all such pairs if for each i from N to 1 , we keep the set of candidate j 's. We get a list of pairs i, j which are candidates of a, b.

Then, we process the queries. For each t from N to 1 , we keep a sequence v. Here the x-th value of the sequence v is defined as the maximum of the sum $A_{a}+A_{b}+A_{c}$ for $a, b, c(b-a \leq c-b)$ satisfying $t \leq a<b<c=x$.

Once we can keep the sequence v, it is easy to answer the queries.
Let us consider how the sequence v varies if we change t from $s+1$ to s. For each pair i, j of a candidate of a, b as above satisfying $s=i$, for every k with $2 j-i \leq k$, we have

$$
v_{k}=\max \left(v_{k}, A_{i}+A_{j}+A_{k}\right)
$$

Using Segment Tree, we can update a candidate in $O(\log N)$ time. We can calculate the answer for each query in $O(\log N)$ time. Therefore, we can solve this task in $O((N+Q) \log N)$ time.

