Future mobility, autonomous driving and IoT leading to the paradigm shift of automotive industries

Gu-Min Jeong
Smart Embedded System Lab
Kookmin University

Aug. 18, 2016
Introduction

Smart Embedded System Lab@Kookmin Univ.

Smart Car
Smartphone
Smart Robot

Embedded System - Hardware
Embedded System - Software

Control
Pattern Recognition
Network
Smart Embedded System Lab@Kookmin Univ.

Embedded System & CPS
- Embedded HW & SW
- Automobile, Smartphone and Robot

Embedded Systems
- Application
- Platform/Middleware
- RTOS
- HW (SoC, MCU, MP)

Automobile

Smartphone

Robot
Introduction

Smart Embedded System Lab@Kookmin Univ.

Education/Training Center

- Embedded SW for Automobile MCU & OSEK 2011
- Advanced Android Programming 2011
- Automobile Embedded Systems 16/32/Multicore MCU, OSEK/AUTOSAR 2007~Now
- Automotive Control System 2014~Now
- Smartphone programming Mobile Embedded System 2010~2013
- UC Irvine Mobile Embedded SW with Android 2012 SQ
- Internet of Things 2014~Now

- AUTOSAR platform OSEK/AUTOSAR, Odin Tool, Multicore MCU 2015~Now
News Articles

- News articles about CES, MWC, IFA and Motor show
- News articles on smart car and IoT
What to cover

- Paradigm shift of the automotive industry
- Evolution of intelligent vehicle
- Future mobility
- Trend of recent exhibition
- Other main issues
- Autonomous driving
- Changes due to autonomous driving and future mobility
- Summary and conclusion
Reorganization of the automotive industry

- Reorganization of car manufactures
 - Segmentation
 - Ergonomics
 - Personalized automobile

- Changes in future mobility
 - Small cars
 - Autonomous driving
 - Electric car
 - Car sharing
 - Wireless charging

- Challenges of emerging companies
 - Automotive cloud
 - Internet of Cars
 - Autonomous Driving
 - Sharing Economy
 - Electric Vehicle

Smart Embedded System Lab
Insight from CEOs’

- We do not plan to become the Foxconn of Apple (Aug. 2015)
 - Dieter Zetsche, Chairman of the Board of Management of Daimler

- Mercedes-Benz sees business potential in offering on-demand limousine services using driverless cars (Sep. 2015)
 - Dieter Zetsche, Chairman of the Board of Management of Daimler
 - Car2Go + autonomous driving
 - Challenge to Uber’s future model

Reinvention of VW (Sep. 2015)

- Winterkorn, CEO of Volkswagen
- The challenge of Tesla, Uber, Google, Apple, etc.
- Electric Vehicle, connectivity and autonomous driving

Toyota wants to virtually eliminate gas engines by 2050 (Oct. 2015)

- Toyota
- Hybrid and fuel-cell vehicle
- Reducing emission 90% by 2050 compared with 2010 levels
Insight from CEOs’

- **Driverless cars are coming sooner than you think (Mar. 2015)**
 - Ron Medford, Director of Safety for the Google Self-Driving Car Project
 - The arrival of autonomous cars to have a dramatic effect on our lives

- **The Car is the Ultimate Mobile Device (May 2015)**
 - Jeff Williams, Apple's senior vice president of operations
 - Titan project-Electric vehicle (2019)

- **We'll ease the transition to self-driving cars (Sep. 2015)**
 - Travis Kalanick, CEO of Uber
 - 2020, transportation system using autonomous driving

- **Musk said it will be technically feasible for the driver to fall asleep and let the car do the driving in about three years (Oct. 2015)**
 - Elon Musk, CEO of Tesla
 - Autonomous driving 2018
Insight from CEOs’

- **Mercedes isn’t losing any sleep over the Apple Car (Feb. 2016)**
 - Dieter Zetsche, Chairman of the Board of Management of Daimler
 - Doesn’t seem to be concerned about the recent rumors that Apple may be developing its own automobile

- **Relax car dealers, don’t fear self-driving cars (Mar. 2016)**
 - John Krafcik, CEO of Google’s self-driving car project
 - Self driving cars are going to be more expensive physical assets

- **I hate to admit it, but Tesla did everything right (Mar. 2016)**
 - Stefan Niemand, Audi’s EV chief
 - Supercharger network

- **When I look at the automobile, what I see is that software becomes an increasingly important part of the car of the future (Apr. 2016)**
 - Tim Cook, CEO of Apple
 - CarPlay + iPhones

- **BMW will launch its first self-driving car in 2021 (May 2016)**
 - Harald Krueger, CEO of BMW
 - HERE mapping tech for autonomous driving
Paradigm shift of the automotive industry

- **Strategies of competitors**

 Carmakers
 - Automotive cloud
 - 3G network (eCall)
 - Collecting vehicle/driving information
 - Standard on Extended Vehicle (2014~)
 - Buying Nokia ‘Here’ (Audi/BMW/Benz, 2015. 8)
 - Common platform for carmakers
 - Against Carplay and Android Auto
 - Toyota-Ford cooperation on SDL (2016.1)
 - Smart Device Link
 - Against Carplay and Android Auto
 - Autonomous driving technology
 - Commercialization on 2020
 - Applying partial technologies
 - ACC+LKAS
 - Autonomous Emergency Braking
 - Autonomous parking

 Emerging companies
 - Apple/Google
 - Merging industries with smartphone/cloud
 - Vision for EV/ autonomous vehicle
 - Google: autonomous driving 2020
 - Apple: EV 2019
 - Tesla
 - Autonomous driving 2018
 - Successive launching of autopilot function
 - Innovative development methodology
 - Emphasis on SW
 - Uber
 - Vision for autonomous driving (2020)
 - Autonomous transportation
 - Car sharing
Evolution of intelligent vehicle

Evolution of vehicles

<table>
<thead>
<tr>
<th></th>
<th>Past</th>
<th>Current</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Industrial Device</td>
<td>Personal Device</td>
<td>Cooperative Convergence Device</td>
</tr>
<tr>
<td>Keywords</td>
<td>Driving</td>
<td>Safety, convenience, comfort, ergonomics</td>
<td>Autonomy, cooperation, convergence</td>
</tr>
<tr>
<td>Technology</td>
<td>Mechanical engineering Engine</td>
<td>EECS Human engineering/ergonomics</td>
<td>SW and convergent technologies AI, Communication, Multimedia, Big data, Cloud, Sensor fusion</td>
</tr>
<tr>
<td>Industry</td>
<td>Carmakers</td>
<td>Carmakers with the help of IT industries</td>
<td>Reshaping the industries</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Complicated business model</td>
</tr>
<tr>
<td>User</td>
<td>Small number of users</td>
<td>Mass users Personalization</td>
<td>To the elderly or disabled drivers</td>
</tr>
</tbody>
</table>

- **Driving**
- **Autonomy, cooperation, convergence**
- **EECS**
- **Complicated business model**
- **Reshaping the industries**
- **Small number of users**
- **Mass users Personalization**
- **SW and convergent technologies**
Evolution of intelligent vehicle

Past
- Industrial device
- American makers
- Mechanical engineering

Current
- Personal device
- German makers
- EECS and ME

Future
- Cooperative Convergence Device
- All things
- Reshaping
- Cloud and converging technologies

Keywords
- Car
- Driver, Car
- Driver, Pedestrian, Road, Car

Industry
- American makers
- German makers
- Reshaping

Technology
- Mechanical engineering
- EECS and ME
Platform evolution of carmakers

Automobile

- Android
- Multi-Media Platform
- Cloud
- ADAS (Advanced Driver Assistance System)
- Autonomous Driving
- In-Vehicle infotainment - GENIVI
- Autosar (Automotive Open System Architecture)/HW platform
Evolution of intelligent vehicle

- Platform evolution of Google

Google

- Vehicle: Google’s Robot Car
- Android
- Smart Phone: Android
- ROS.org
- Robot: ROS
- Google Cloud
- Cloud service: Drive
Background and motivation

Population concentration in mega cities
- 60% of the population will live in mega-cities
- Transportation problem
- Time and resource problem
- Pollution problem
 ◆ Trans. policy–small car–autonomous driving

Air pollution problem
- City environment and pollution problem
- Fine dust
- Transportation problem
 ◆ EV-fuel cell car – transportation policy

Changes in society
- Single house hold
- Single-occupancy vehicle
- Aging society
- Changes in ownership
 ◆ Small car-autonomous driving-car sharing

Changes of customers and users
- Space continuity
- Changes in usage and consumption
- Ergonomics
 ◆ Ergonomics-Apps-Connectivity
Basic concept of future mobility

Between cities
- Middle · large car
- Logistics
- Platooning
- Autonomous driving

Inside cities
- Small car
- EV
- Car sharing
- Autonomous driving
- Wireless Charging
Future mobility

- **How to implement future mobility**
 - **Small electric vehicle**
 - For transportation and environment

 - **Car sharing**
 - Resource management
 - Car sharing & ride sharing
 - Autonomous parking

 - **Autonomous driving**
 - EV
 - Easy-to-control rather than engine based cars
 - Easy-to-detect malfunctions

 - **Wireless charging**
 - Usability

 - **Connection to grid system**
Paris’ policy for Future mobility (2014 Paris motor show)

- **Environment-Friendly Policies**
 - Encouragement for EV car sharing, public bicycles
 - EV free parking, High parking charges imposed on the high rate of automobile traffic zones
 - Speed limit 50km/h
 - License free driving for small EV(45km/h)
 - Charging stations

- **Small cars**
 - 80% for new cars in France

<table>
<thead>
<tr>
<th></th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
</tr>
<tr>
<td>Paris</td>
<td>38 µg/m³</td>
</tr>
<tr>
<td>Seoul</td>
<td>46 µg/m³</td>
</tr>
</tbody>
</table>

PM10 Average Warning level

- PM10: Average 38 µg/m³, Warning level 50 µg/m³
- PM10: Average 46 µg/m³, Warning level 80 µg/m³
Future mobility

- **Ford Smart Mobility (CES 2015)**
 - Connectivity
 - Ford Sync 3.0
 - Autonomous driving
 - Sensor/SW/Big data
 - Information sharing
 - Car sharing
 - Parking lot
 - 25 experiments
 - Rapid Recharge & Share (Dearborn, U.S.)
 - Use electric vehicle for solving the refueling problem of the existing Share-Car
 - Multimodal Transportation Platform (Chongqing, China)
 - Solving urban mobility using various transportation
 - taxi, bike rental, rickshaw and etc.

- **Audi urban future 2014**
 - Seoul, Mexico city, Berlin, Boston
Future mobility

Future mobility at Hyundai motor group (2016 Geneva motor show)

- Project IONIQ
 - A long-term research and development project that will redefine future mobility through innovation, enhancing the lives
 - Three eco-friendly powertrain (HEV, PHEV, EV)
 - ‘Freedom in mobility’ with the four key directions
 ✓ Freedom to effortlessly access mobility whenever and wherever
 ✓ Freedom to connect everyday life while on the move
 ✓ Freedom from accidents and inconveniences
 ✓ Freedom from environmental pollution and energy exhaustion
Future mobility

- Evolution to future mobility
 - On-demand transportation system
 - Logistics

- Uber
 - Ride sharing
 - Autonomous driving
 - On-demand transportation

- Tesla
 - Solar power
 - Heavy vehicles
 - Fully autonomous car-sharing

- Benz
 - Autonomous driving
 - Car2go
 - Mytaxi (Sep, 2014), Hailo (July, 2016)
 - EV Truck

- Toyota
 - Autonomous driving
 - Cooperation with Uber
 - Evolution of taxi service using autonomous driving

Smart Embedded System Lab
2014 IFA, Bosch/Tomtom

- ADASIS (Advanced Driver Assistance System Interface Specification)
 - Connection between navigation (map data, vehicle position, speed etc.) and ADAS system

- Bosch & TomTom
 - Merging ADAS (Bosch) and LBS (Tomtom)
 - Tomtom knows the road
 - Bosch knows the car
 - Enhance gas mileage

- TomTom
 - Navigation information

- Bosch
 - ADAS
 - Intelligent cruise control
 - Upcoming curve alerts
 - Jam tail warnings

Source: http://www.erticonetwork.com/
Trend of recent exhibition

- 2014 Paris motor show, Citroen automotive app model
 - 130 euro per year
 - 18 apps for head unit
 - 2 apps for smartphone (Link mycitroen, Scan mycitroen)

Using 3G network key
379 euro

Eco-Driving
Find My Car
Last Mile Guidance

Download

Cloud

Diagnosis and management

<Link mycitrien>

<Multicity connect>

<Scan mycitroen>
Trend of recent exhibition

- CES 2015
 - Android auto and Carplay
 - For major OEMs
CES 2015 – GM, Prognostics based on cloud

- **Target year: 2016**
 - 2016 Chevrolet Equinox
 - 2016 Chevrolet Tahoe
 - 2016 Chevrolet Suburban
 - 2016 Chevrolet Corvette
 - 2016 Chevrolet Silverado
 - 2016 Chevrolet Silverado HD

- **Uploading sensor data**
 - GM OnStar 4G LTE Connection

- **Data analysis in server**
 - OnStar’s secure servers

- **User notification**
 - RemoteLink
 - SNS
 - E-mail

Source: GM
eCall and automotive cloud (Paris/Geneva/Shanghai motor show)

- **eCall service**
 - Mandatory service in Europe
 - New BM

- **Bosch in 2015 Shanghai motor show**
 - Extension to automotive cloud from eCall
 - Data analysis of the automotive information

![Ecall button of Benz AMG GLE (Geneva motor show 2015)](image)

- **Remote monitoring system**
- **Connection to call center**
- **eCall module of Bosch**
‘Mobility Connects’, 2015 IAA

- Continental
 - V2X
 - Left-turn Assist based on Vehicle-to-X (V2X) technology
 - Let-turn assist in intersection
 - Electronic Brake Light
 - Roadworks Assistant
 - Remote diagnosis system
 - Extended Vehicle
 - Main information
 - Battery voltage, speed, engine speed(rpm), etc.

- T-mobile
 - Data ownership
Trend of recent exhibition

- **CES 2016**
 - **Nvidia**
 - Deep learning based autonomous driving
 - Sensor fusion
 - 6 Cameras, 4 LIDAR sensors
 - Map from Here
 - Volvo cooperation
 - **Ford Smart mobility**
 - Ford Sync 3
 - SDL cooperation with Toyota
 - Amazon Alexa
 - Smart car-Drone
 - **Faraday Future**
 - Autonomous EV
Trend of recent exhibition

➢ CES 2016
 ▪ Benz
 • Carplay and Android Auto (From Dec. 2015)
 • Benz navigation
 ✓ Using touch and Jog shuttle
 • SW upgrade (T.B.D.)

 ▪ Toyota
 • Deep learning based autonomous driving
 • Crowd mapping
 • Agent plus
 ✓ Prediction based navigation
Trend of recent exhibition

- **MWC 2016**
 - **Ford pass**
 - Solving mobility

- **AT&T**
 - 4G hotspot service in Europe
 - Connection to 7 devices
 - OnStar service
 - eCall

- **Vodafone**
 - Small Cell concept with BMW
 - Driving
 - 4G service in the vehicle
 - Stopping
 - Network service to outside
2016 Beijing Motor Show

- Changan Automobile - Raeton
 - Autonomous driving
 - 2000km test to Beijing from Chongqing
 - Maximum speed: 120km/h
 - Mass production plan from 2025

- LeEco - LeSEE
 - Changes of human life using Autonomous EV
 - Merging various services
 - Car sharing, shopping mall, etc.
 - Proposing new direction of electric vehicle
 - Adapting contents related internet of LeEco
2016 Busan motor show

- Hyundai Genesis G80
 - HDA
 - ISO TC204 WG 14
 - AEB
 - ISO TC22 SC 33
 - eCall
 - ETSI
 - Extended Vehicle
 - ISO TC SC 31
 - Connectivity and Infotainment
 - Apple CarPlay
 - Google Android Auto
 - MirrorLink
 - ADASIS
 - ADASIS Forum

- Map-ADAS (ADASIS)
- Highway Driving Assistance (HAD)
- Apple Carplay (Connectivity and Infotainment)
- Bluelink’s Car Diagnostic (Extended Vehicle)
- emergency Call (eCall)
- Autonomous Emergency Braking System (AEB)
Other main issues

- **Reshaping into 5 major companies**
 - 2015
 - Toyota
 - VW
 - GM
 - Renault-Nissan Alliance
 - Hyundai-Kia

- **Keywords**
 - M&A
 - Alliance
 - Vertical integration
 - Segmentation

- **Chinese companies**
 - **Rising Chinese companies**
 - Shanghai group
 - Cherry
 - Changan
 - BYD
 - Etc.

Leading automobile manufacturers worldwide in 2015, based on vehicle sales

<table>
<thead>
<tr>
<th></th>
<th>Previous Years</th>
<th>2014</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldwide sales</td>
<td>80 million</td>
<td>85 million</td>
<td>100 million</td>
</tr>
<tr>
<td>Production in China</td>
<td>0</td>
<td>25 million</td>
<td>58 million</td>
</tr>
<tr>
<td>Existing Motor Co.</td>
<td>80 million</td>
<td>60 million</td>
<td>40 million</td>
</tr>
</tbody>
</table>

Source: Jae-Kwan Lee, KISTEP forum, 2016. 5
Other main issues

Scenarios of the market reorganization

<table>
<thead>
<tr>
<th>Apple/Google+Low rank carmakers</th>
<th>EV from Tesla and Apple</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Reshaping into 5 major carmakers</td>
<td>- SW oriented methodology</td>
</tr>
<tr>
<td>- Production technologies of carmakers</td>
<td>- Easy implementation of autonomous car</td>
</tr>
<tr>
<td>- Merging smartphone and cloud</td>
<td>- Paradigm shift to EECS</td>
</tr>
<tr>
<td>- Safer cars through big data analysis</td>
<td>- Better in future mobility</td>
</tr>
<tr>
<td>- User analysis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production Apple/Google on their own</th>
<th>Uber based model</th>
</tr>
</thead>
<tbody>
<tr>
<td>- HW optimization based on cloud</td>
<td>- Vision on autonomous transportation model</td>
</tr>
<tr>
<td>- Smart factory</td>
<td>- Centralized autonomous transportation</td>
</tr>
<tr>
<td>- New mobility design</td>
<td>- Ownership change due to car sharing</td>
</tr>
<tr>
<td>- Merging robot and automobile</td>
<td>- Decreasing number of vehicles</td>
</tr>
<tr>
<td></td>
<td>- Increasing usage rate</td>
</tr>
</tbody>
</table>
Main issues for Automotive IoT

- Connected car
 - Connection to smartphone
 - Vehicular Network module (eCall)
 - V2X
 - App download
 - Automotive cloud
 - Autonomous driving

- Autonomous driving
 - Precise map
 - Precise location determination
 - Space continuity
 - Enhancing gas mileage
 - Automotive cloud
 - Centralized autonomous transportation

- Space continuity
 - Car as a living space
 - Continuous interface
 - Geofencing
 - Payment
 - App usability

- Automotive cloud
 - Driving information
 - Navigation and map
 - Car sharing
 - Car information/ Diagnosis
 - Making Safer car
 - Centralized autonomous transportation
Other main issues

- **Extended Vehicle**
 - ISO TC 22(Road vehicles) SC31(Data Communication) WG6
 - Standardization of automotive cloud
 - Germany and France
 - Starting on May 6, 2014
 - Basic concept
 - Virtualized data communication road vehicles
 - Defining data types, data representation, communication methods, etc.

- **HERE**
 - Audi, BMW and Mercedes-Benz acquired Here
 - Nokia’s Mapping Unit
 - HD map for autonomous driving
 - Map platform for carmakers
Autonomous driving

- Recognition
 - Data collection using various sensors
 - Radar, lidar, camera, ultrasonic, GPS, etc

- Judgement
 - Map - Mapping on a variety of data in advance
 - Localization - Identify the exact current location using the map information and sensor values
 - Perceive - Identify all information in the circumstances (lanes, obstacles, etc.)

- Control
 - Correct the problem that caused the way to the destination

Source: NVIDIA
Autonomous driving

- **Core technology**
 - **Sensor technology**
 - Sensors-LiDAR, Radar, Camera, etc.
 - **Positioning**
 - High precision GPS
 - Integration of GPS and INS
 - **High definition Map (HD MAP)**
 - Contains all of the information in the road
 - Error – less than 10cm ~ 20cm

- **V2X**
 - V2I, V2V, V2N

3D image using lidar <Source : Here>

Mapping high definition <Source : Here>
Audi A7 piloted driving concept

- 3 Cameras (1 Front Camera, 2 Top View Cameras)
- 2 Laser Scanners (1 front laser scanner, 1 rear laser scanner)
- 6 Radar Sensors (2 corner radar sensors, 2 front radar sensors, 2 rear radar sensor)
- 2 Ultra Sonic sensors
- **Connected Automation for Greatest Benefits**

 - **Autonomous Vehicle**
 - Operates in isolation from other vehicles using internal sensors

 - **Connected Vehicle**
 - Communicates with nearby vehicles and infrastructure

 - **Connected Automated Vehicle**
 - Leverages autonomous and connected vehicle capabilities

Source: U.S. Department of Transportation, `Beyond Traffic: The Smart City Challenge` (2015.12.17)
Autonomous driving

Road map example for autonomous driving

- 2016: Partially autonomous driving (HDA/TJA)
- 2018: WAVE based V2X (V2I), eCall mandatory
- 2020: Multi-lane driving, Intersection driving, Extended Vehicle standard
- 2025: Here HD map for autonomous driving, Cloud based diagnostics, Wireless charging standard, On-demand mobility service using autonomous driving
- 2030: Fully autonomous driving, 5G based V2X, HD map for all over the world
- 2035: Autonomous vehicle > 50%

Extended Vehicle standard
HD map for HDA
Ride sharing service
Taxi booking app
On-demand transportation service
Autonomous cars

Transforming Personal Mobility (2013. 1)
- Earth Science Institute at Columbia University
- Simulation for the data for Ann Arbor, Michigan, 2009
- Main Results
 ✓ Data
 - Population: 285,000
 - Number of vehicles: 200,000, for local traffic: 120,000
 - Average of local driving distance: 9.3 km, Average of passengers: 1.4
 - Operating ratio: 5%
 ✓ After autonomous driving
 - Small car - Car sharing - Centralized autonomous driving
 - Needed number of cars for local traffic: 18,000
 - Waiting time: under 1 min.
 - Operating ratio: 70%
Autonomous driving

- Autonomous vehicles deployment regulations by California DMV (Department of Motor Vehicles)
 - Not ‘Sale’, but ‘Lease’
 - Operator’s diagnosis and management

- Diagnosis and management
 - Automotive cloud
 - Extended Vehicle

- Connection to ISO TC 22 standards
 - Clarification for autonomous driving cases
 - Extended Vehicle
 - Driving policy

- First regulation for autonomous vehicle
Changes due to autonomous driving and future mobility

- **Expected changes**
 - Autonomous cars: Breakthrough for electric vehicles 2014
 - Transforming personal mobility, 2013

- **Major possibilities**
 - Small car-oriented urban mobility
 - Various types of mobilities
 - Increased operating ratio
 - Decrease of number of vehicles
 - Pre-diagnostics of automobile
 - Crisis of low rank OEM
 - Fault detection and diagnostics
 - Automotive O2O
 - Big data related industry
 - Centralized transportation system
 - Big data related industry
 - Transportation related industry
 - Insurance
Main change in automotive industry forecast (Autonomous Driving, Roland Berger, 2014)

- Divided the automotive future into personal vehicle ownership and mobility-on-demand
- **Scenario A1**
 - Possibility of maintaining vested rights by traditional OEM
- **Scenario A2**
 - New company takes leadership
 - Decrease OEM revenues
- **Scenario B3**
 - Car sharing company / OEM Beneficial to all
 - Large platoon system
- **Scenario B4**
 - New mobility company gets high position
 - OEM gets lower position
 - Crisis of low rank OEM
Changes due to autonomous driving and future mobility

- **Operator-centric services**
 - Services
 - Operators
 - Smartphone
 - Services
 - Operators
 - Autonomous Vehicle

- **On-demand mobility service**
 - Car sharing
 - Ride sharing
 - Taxi booking
 - On-demand Mobility Service
Changes due to autonomous driving and future mobility

- **Space continuity related industries**
 - Car as a living space
 - Changes in entertainment, sightseeing, leisure, etc.
 - Movie
 - Mobile office
 - Rest area
Changes due to autonomous driving and future mobility

Main concept cars

Benz F015 luxury in motion (CES 2015) source: Benz

Concept 26 (Source: Volvo)

Faraday future FF zero1 (Source: Faraday future)

Rinspeed Buddie (Source: Rinspeed)

LeSEE [Beijing motor show 2016]

BMW Ivision [CES 2016]
Changes due to autonomous driving and future mobility

Vision for future mobility
- Small car-EV-autonomous driving
- Car sharing-Wireless charging

Fault detection and diagnostics
- Automotive O2O
- Big data related industry

Centralized transportation system
- Big data related industry
- Transportation related industry

Increased operating ratio
- Decrease of number of vehicles
- Pre-diagnostics of automobile
- Crisis of low rank OEM

Insurance
- Decrease of accident rate
- From personal insurance to automotive company insurance or operator insurance
- Malfunction related insurance model

Related industry
- New industry related to interior and usability
- Various technologies from EECS, furniture, architecture, material, etc.
- Changes in entertainment, sightseeing, leisure, etc.
Summary and conclusion

- **Paradigm shift of automotive industries**
 - Reshaping of the automotive industry
 - Future mobility, autonomous driving and IoT
 - Competition between carmakers and IT companies

- **Future mobility**
 - Small car-EV-autonomous driving-Car sharing-Wireless charging
 - On-demand transportation service
 - Logistics

- **Autonomous driving**
 - Reshaping of the autonomous industry
 - Car as a living space

- **IoT**
 - Internet of Cars
 - Automotive cloud
Thank you!

gm1004@kookmin.ac.kr