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Quantum information processing using frequency control of impurity spins in diamond
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Spin degrees of freedom of charged nitrogen-vacancy (NV~) centers in diamond have large decoherence
times even at room temperature, can be initialized and read out using optical fields, and are therefore a
promising candidate for solid-state qubits. Recently, quantum manipulations of NV~ centers using rf fields
were experimentally realized. In this paper, we provide a theoretical demonstration, first, that such operations
can be controlled by varying the frequency of the signal, instead of its amplitude, and NV~ centers can be
selectively addressed even with spacially uniform rf signals; second, that when several NV~ centers are placed
in an off-resonance optical cavity, a similar application of classical optical fields provides a controlled coupling
and enables a universal two-qubit gate (CPHASE). rf and optical control together promise a scalable quantum

computing architecture.

DOLI: 10.1103/PhysRevB.76.014122

I. INTRODUCTION

Impurity spins in diamond are among the most promising
candidates for solid-state quantum hardware. The so-called
(negatively charged) nitrogen-vacancy (NV~) centers have a
low-lying spin triplet state 3A2 with a large decoherence time
(up to ~350 ws) at room temperature, which can be initial-
ized and read out using a strong, spin-conserving optical
transition to the excited E state."® The coherent manipula-
tion of the 3A2 state and its coupling to spins of °C (Refs. 2
and 6) and N (Refs. 4 and 5) demonstrated the feasibility of
NV~-based quantum devices. Though the direct coupling of
different NV~ centers, necessary for a scalable architecture,
would require placing them too close to each other (within a
few nanometers), coupling through an optical mode is
possible’™ using Stark shifts, in order to tune the coupling
on and off. (Stark shifts in NV~ were observed in bulk
response %12 as well as from individual centers.'?)

The use of local time-dependent fields for selective con-
trol is a natural approach, but it is not always easily achieved
in the case of microscopic qubits. Here, we suggest an ap-
proach which would allow us to address specific NV~ centers
by tuning to their resonant frequency, which can be made
position dependent by the application of a static nonuniform
magnetic field. We will also show that a similar approach
using classical optical fields allows controlled coupling and
universal two-qubit gates for NV~ centers in an optical cav-

1ty.

II. MODEL

A NV~ center is a negatively charged complex of a nitro-
gen impurity and a neighboring vacancy. It can be formed as
a result of nitrogen implantation in the diamond matrix; in
experiments so far, the conversion from N to NV~ was
achieved with a limited efficiency of about 5%.% It is, there-
fore, common to find a NV~ center close to a nitrogen im-
purity. Unlike a NV~ center, a nitrogen impurity does not
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have an electric dipolar moment and does not couple to op-
tical fields. Consider such a N-NV~ complex.*> Let us
choose the [111] direction as the z axis. The magnetic mo-
ment (spin 1) of the NV~ center and the eigenvalues of its z

component are S and M,=0,x1. For the N impurity (spin
1/2), they are denoted respectively by (1/2)c and m,
==+1/2; 7 is the vector of Pauli matrices. The *A, ground
state of the NV~ center is split by the crystal field, while the
(M.=+1) states are degenerate, and the (M,=0) state be-
comes the true ground state. The (M.=0) state leads to en-
hanced photoluminescence through the excitation to ’E
[states M_==+1 undergo frequent transitions to a metastable
level 'A, which is strictly forbidden for the (M,=0) state];
this allows an optical readout.>=> The external magnetic field
along the z axis splits the (M.==x1) states as well as the
(m,==+1/2) spin states of the nitrogen impurity. The Hamil-
tonian of the system is (in the absence of an electric field)

H=Hyy+ Hy+ Hpy, (1)
where
Hyy=D(S.)*+ kB - S, )
1 - - -
HNZEKB-O'+A0"1. (3)

Here, D=2.88 GHz,'#"1® x=2.8 MHz/Gs,* the hyperfine
splitting A=86 or 114 MHz depending on the position of the

nitrogen in the lattice,!” and I is its nuclear spin (I=1). The
magnetic dipolar interaction

Hiy=y[S-6-3(S-n) (G- )] (4)

has a scale y=6.5 MHz for a distance of 2 nm between NV~
and N; 7 is the unit vector in the direction connecting N and
NV~

When B,=B,.=514 Gs (while B,=B,=0), the transition
(M.=0)« (M_,=-1) in the NV~ center is in resonance with
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the transition (m.=+1/2)« (m.=-1/2) in N. The term (4)
then induces coherent transitions in the system, which were
experimentally observed in Refs. 4 and 5. Other resonances,
shifted by ~15 Gs to either side due to the hyperfine inter-
action in N, were also observed. (The hyperfine splitting in
the NV~ center was too small to be resolved:® we neglect it
here.)

In order to distinguish different NV~ centers, we now con-
sider the application of a B, field gradient. For example, if
they are placed 10 um apart, a field gradient of 1 T/cm will
produce a 30 MHz difference in the (M,=0)— (M,=-1)
transition frequency between the neighboring centers, which
is enough for our purposes, as we shall see below.

III. rf CONTROL OF SINGLE-SPIN ROTATIONS IN NV~
CENTERS

If the field B, # B, the transitions
(M.=03m,=1/2) - (M,=-1;m,=-1/2)

are suppressed. (Note that these energy-conserving transi-
tions do not conserve spin.) Single-qubit operations on a
NV~ center can then be performed by applying a spatially
uniform ac field along the y axis, with the resonance fre-
quency w,=D— kB, (of order of 1.5 GHz) corresponding to

y
the (M,=0) < (M_,=-1) transitions:

H,= kB, cos w,t S, (5)

Due to the B, gradient, this frequency is different for differ-
ent NV~ centers, and we have frequency-based control. First,
we go to the interaction representation:

) J
H— UyyH Uy~ zUNv;t[UTNV], (6)

where

Uny = expliHyyt]
=(1—82) +(S? cos B.t +iS, sin B.t)exp[iDr].
()

Now we apply the rotating wave approximation (RWA), i.e.,
neglect the fast rotating terms with the frequencies ~D,
kB,, (D-kB,), w, compared to the slow terms with
0~ (D-kB,)-w,. This is a commonly used trick (see, e.g.,
Ref. 18, Sec. 15.3.1), which is justified if the fast terms are
averaged to zero when the equations of motion are integrated
over a time short compared to the slow period, 27/ w.
The resulting effective Hamiltonian

kBy| Sy =[S.,S,], | _ kBy v
yeff= "5 [ = y - (8)
2 2 2

The operator in brackets acts as the Pauli matrix o, on the
subspace {M,=0, M,=—1}. The ac field produces relatively
fast rotations of a chosen NV~ center, in excess of 1 MHz/G.

The use of frequency instead of amplitude rf control is not
dictated solely by the fact that the latter would require a local
(within a few microns) application of rf fields. The latter is
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feasible, though with the addition of extra circuits,'® and, for
somewhat bigger devices, is being done in experiments with
superconducting flux and phase qubits on a regular basis
(see, e.g., Ref. 20). The frequency control?' will be certainly
preferable when it is easier to produce sharp and precise
changes in the frequency of the rf signal than in its ampli-
tude.

IV. rf CONTROL OF NV™-N COUPLING

A relatively weak ac field with appropriate frequency
can turn on the transitions (M.=0;m.=1/2)—(M,=—1;m,
=—1/2). To see this, we again perform a unitary transforma-
tion of the Hamiltonian to the interaction representation,

t Ut Orrit ot
H— UNUN‘/H UNVUN_ lUNUNvg[UNVUN]’ (9)

where Uy, was defined in Eq. (7), and
Uy = expliHyt]
=cos[(kB. + AL)1/2] + io, sin[(kB, + AL )t/2]. (10)

The resonance condition for the transition (M =0;m,
=1/2)—(M,=-1;m,=-1/2) is 2kB,+AIl,—D=0. Assuming
a detuning dw from resonance, i.e.,

2kB.+ Al - D = bw, (11)
we find [from Eq. (9)] the effective interaction

cos(dw 1)

H=7v(1-3n)S,0,+ ——y(2-3n’- 3n3)
oo 2V2 ’

[N+ oW, (12)

[with the same notation as in Eq. (8)]. The second term in the
right-hand side of Eq. (12) is fast rotating and should be
dropped in the RWA, unless the detuning dw can be compen-
sated. This is done by an additional field along the z axis,
B!(1)=nkB, sin wt. [The corresponding term in the Hamil-
tonian is not affected by the transformation (9).] After one
more unitary transformation,

0
Hegp— U/HefolT—iU'E[UW], (13)
with
) 1 \cos(wt)
U' =exp| —inkB, Sz+§o-z — |, (14)
w

and assuming w=dw, we obtain, in the RWA, the following
Hamiltonian:

_ T(20KB.]
Aye=y(1-3n))S.0, + 11Q7wB )

/

22
<[+ Ve ]. (15)

Otherwise, the effective coupling is zero. Here, J; is a Bessel
function.

The coupling strength, y=6.5 MHz, determines how far
we should be off-resonance in order to achieve decoupling. A

y(2-3n;-3n;)
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FIG. 1. (Color online) The occupation probabilities of the NV~
center ground state M_ =0 (light curve) and the excited state
M _.=-1 (dark curve) as a function of time, for the NV™-N detuning
6w=0.2 GHz and the ac field amplitude KB; =67 MHz (correspond-
ing to 7=0.05, with static field amplitude «B,=1.34 GHz);
v=6.5 MHz. The transition frequency, =2 MHz, agrees with the
RWA value following Eq. (15).

large detuning is also needed to justify the approximations
leading to Eq. (15). The coupling is switched on by the ac
field B.(r). The coupling strength will be smaller than 7, but
not drastically. Even choosing 6w=0.2 GHz, 7=B]/B
=0.05, and remembering that «B,,~1.5 GHz, we find the
attenuation of the coupling strength =~0.32. It will still pro-
duce coherent transitions at ~2 MHz, which is fast com-
pared to the decoherence times at room temperature of up to
0.35 ms.

Numerical simulations of the system described by the
Hamiltonian in Egs. (1)—(4) agree well with the predictions
of the effective Hamiltonian [Eq. (15) and its generalization
that can be derived following Ref. 22]. In the numerical
simulations, the NV~ center was truncated to the subspace
{M,=0, M_=-1} and the external magnetic fields were cho-
sen to be parallel to the z axis. This truncation is justified
because the M =1 state of the NV~ center is very high in
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FIG. 2. (Color online) Maximum occupation probability for the
NV~ center ground state, max p]a/ov , when initially in the excited
state, as a function of the ac field frequency w for the same choice
of parameters as in Fig. 1. Note additional peaks at integral frac-
tions of Sw, which correspond to the higher-order (multiphoton)
processes, dropped from Eq. (15). The higher-order peaks do not
reach unit height because of limited frequency resolution and evo-
lution time in the numerical simulation.
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energy and is, therefore, not involved in the dynamics. Fig-
ure 1 shows the time evolution of the coupled NV™-N system
as calculated from the time-dependent Schrodinger equation
with the truncated Hamiltonian. Figure 2 shows the ampli-
tude of the |M,=0,m_.=1/2)«|M,==1,m,=—1/2) oscilla-
tions, which represent a two-qubit operation, as a function of
external-field driving frequency. These calculations confirm
the validity of the RWAs leading to the effective Hamiltonian
[Eq. (15)].

As an aside, in the same way, one can show that when the
system is in resonance, an ac field B](r) will suppress the
transitions and freeze the spins in NV~ and N (coherent de-
struction of tunneling; see, e.g., Ref. 22). This is not useful to
the coupling scheme we are describing here.

In order to perform arbitrary one-qubit rotations of nitro-
gen spins, as well as two-qubit gates between NV~ and N, we
only need to initialize NV~ and perform single-qubit rota-
tions on it (see, e.g., Ref. 23 where the phase qubit is analo-
gous to a NV~ center, and the quantum two-level system to a
N impurity spin), which can be done using the rf control
[Eq. (8)].

V. NV°-NV~ AND INDIRECT N-N COUPLINGS

The scalability of the design requires the coupling be-
tween different NV~ centers or NV™-N complexes. For mac-
roscopic qubits, this is done through the magnetic flux or
charge coupling to cavity modes.?>2 In our case, unfortu-
nately, the magnetic coupling is way too weak. Instead, we
can use an optical cavity mode and two classical laser fields,
along the lines of Refs. 8 and 27. This has the disadvantage
of involving the ’E state, where the decoherence rate is
higher. On the other hand, the laser fields are easier to apply
locally. By tuning the frequency of the laser field, the inter-
action strength can be controlled.

Consider two NV~ centers placed in an off-resonance op-
tical cavity. The Hamiltonian of the system is

H=Hy+ Hfjejq + Heayity (16)
E E+Q, E-Q, \ E .
H0=wcaTa+E(I+oﬁ)+< 5 1+ 7z1>+5(1+o~§)
E+Q E-Q
+(—21+ T%g) (17)

Hyera = Hriera,1 + Hiiela 2
= g1V cos(("1) o} + g1 VET cos(wf )7
+ ggg)g(zo) cos(w(zo)t)o"z‘ + gg;”g(;” cos(wg_l)t) T,
(18)

Hcavity = Hcavity,l + Hcavity,Z
= g(lg)e(a"' +a)oi + g(l_zl):s(a'r +a)7T + ggg)e(a"' +a)oi
+ g5 ela" +a) 5. (19)

Here, the operators
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s

;= [E)XE]| = [(AsM, = 0) (A M, = 0)0;

bl

7= [ENE| - [(AsM, = = D}{(A:M, =~ 1);

s

o} = |E)(A;M = 0);] + |(A; M = 0),XE;

7= [E)(AM == 1) +|(A; M, = - 1),XE||

account for the optical transition *A«>E in the jth NV~ cen-
ter. The term Hjy describes the interaction of the electric
moments of the NV~ centers with the classical laser fields,
8(10{1) , with frequencies w(loi_l), polarized in the x direction;
Hc’avily describes their interaction with the optical cavity
mode polarized in the z direction, € is the “electric field
amplitude for one photon in the cavity.”

The idea of the approach remains the same as in the case
of rf control of the NV™-N coupling. For example, in order to
induce the transition (A;M.=0)«< (E) in the NV~ center 1,
we switch on the laser field 5(10), which is tuned to the fre-
quency a)(lo):wc—E. After performing the unitary transfor-
mation with U=UcyUy, Where Uyyiyy=expli['dtH iy
and Uy=exp[iHt], and then a RWA, the resulting term in the
Hamiltonian will be

0)_(0) (0
0 _giesie

8eff,1 = >
C

0 0 -
H(eff),l =- géff),l(aTo-l +aay),

(20)

and similarly for the rest of the transitions. As in Ref. 27 the
coupling strength is proportional to the classical field ampli-
tude. To target only one NV~ center, we now have two strat-
egies. One is to reproduce our earlier approach and apply a
nonuniform electric field. Then, due to the Stark shift, the
resonance frequency of a given NV~ center will depend on
its location, and the control is realized by applying uniform
optical fields at specific frequencies. [Of course, due to the
nonuniform static magnetic field applied to the system, the
(A < E) transition frequencies will already differ for different
NV~ centers, but the difference is negligible.]

The other strategy is to apply laser fields locally. Given
the transition wavelength of 637 nm, this may either put a
lower limit on the spacing between NV~ centers or require,
e.g., using evanescent modes in waveguides.

The interactions (20) can produce single-qubit
rotations.®?” In our scheme, they can be done more easily
with rf pulses. On the other hand, two-qubit gates for differ-
ent NV~ centers require long-range coupling, which can be
achieved through virtual excitations in the cavity. For ex-
ample, if we only apply the fields 5(10) and 5(20), and eliminate
the cavity modes in linear order by the Schrieffer-Wolff
transformation,?® we obtain the effective interaction

2 0) (0
g0 _ 8eff,18eff.2 (o

off,12= _F o3 + 0y07). (21)

We will also need transitions between the A, levels M,
=0 (—1) and the °E state. They can be realized by applying
another laser field with x polarization and at a corresponding
resonant frequency =470 THz (A=637 nm). The cavity de-
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grees of freedom or other NV~ centers will not be involved.
Using Eq. (21), we can produce, e.g., an entangling trans-
formation

(a|Mz=0>l +B|Mz=_ 1>1) ® |Mz=0>2
— (a|MZ=0>] ® |MZ:_ 1>2
+ﬁ|Mz:_1>l®|Mz:O>2)' (22)

To achieve this, we perform the following set of operations:

(1) mr-pulse between |[M_.=0), and |E);; the result is
(a|E>l +B|Mz:_1>l) ® |Mz:O>29

(2) m-pulse of the interaction (21),
(a|M.=0), ® |E),+BIM_=~1), ®|M_=0),),

(3) mr-pulse between |E), and |[M,=-1),; the outcome is
(a|M,=0),® |M,==1),+B|M,=—1),® |M_=0),), as re-
quired.

After enabling the effective NV™-NV~ coupling through
the cavity, the operations on N impurities coupled to differ-
ent NV~ centers can be realized in the same way as in Ref.
23.

Although the above procedure nicely demonstrates the
possibility of using the cavity to perform two-qubit gates,
it takes any state of the form (a|M,=0),+B/M.=-1),)
®|M_.=-1), outside the computational basis. Instead, the
CPHASE gate could be implemented as follows:

(1) 7-pulse between |M.=0), and |E),,

(2) 2m-pulse of the interaction (21),

(3) m-pulse between |M_=0), and |E),.

An inspection of the above procedure shows that the three
states  [M.=0),®|M.=0),, |M.=-1),®|M.=0),, and
|M.=-1),® [M_.=-1), are left unchanged at the end of the
procedure, whereas the state |[M,=0), ® |[M_=-1), acquires a
minus sign (note that we are not including here the phases
accumulated as a result of single-qubit Larmor precession).
This two-qubit gate, along with single-qubit rotations, forms
a universal set of gates for quantum computing.

The requirements to the optical cavity are high, but not
impossible. In order to resolve ~1.5 GHz against the
~470 THz resonant frequency, the quality factor of the cav-
ity should be at least of order 3 X 10°, while a bulk photonic
crystal cavity made of diamond is expected to have a rather
low quality of 3 X 10* (Ref. 29). Hopefully, it can be signifi-
cantly improved using the photonic double-heterostructure
approach.°

We could also somewhat improve the situation by adding
one more step and swapping the states |M,=0) and [M,=1).
This can be done again using the rf field B,(t) [Eq. (8)], this
time with the frequency w/=D+«B, (of order 4.5 GHz).
This increases the difference of the states involved in the
optical coupling from ~1.5 to ~3 GHz.

resulting in

VI. CONCLUSIONS

We propose a frequency-controlled approach to coherent
manipulation of spin states of NV~ centers and NV™-N com-
plexes in diamond. It allows to address different spins
through the difference in their resonance frequencies, in-
duced by a static nonuniform magnetic field. The time-
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domain manipulations are performed using uniform rf fields.
Different NV~ centers and NV™-N complexes can be coupled
optically through the virtual excitations in an optical cavity.
Here, both frequency control with spatially uniform ac fields
and with local ac fields are possible. The required cavity
quality factor is high, but achievable. Our results show that
small-scale quantum information processing devices based
on impurity spins in diamond may be feasible in the near
future.
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